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ABSTRACT

The onset and development of both dynamically and convectively forced boundary layer

rolls are studied with linear and nonlinear analyses of a truncated spectral model of shallow

Boussinesq flow. Emphasis is given here on the energetics of the dominant roll modes, on the

magnitudes of the roll-induced modifications of the initial basic state wind and temperature

profiles, and on the sensitivity of the linear stability results to the use of modified profiles as

basic states. It is demonstrated that the roll circulations can produce substantial changes to

the cross-roll component of the initial wind profile and that significant changes in orientation

angle estimates can result from use of a roll-modified profile in the stability analysis. These

results demonstrate that roll contributions must be removed from observed background wind

profiles before using them to investigate the mechanisms underlying actual secondary flows

in the boundary layer.

The model is developed quite generally to accept arbitrary basic state wind profiles as

dynamic forcing. An Ekman profile is chosen here merely to provide a means for easy

comparison with other theoretical boundary layer studies; the ultimate application of the

model is to study observed boundary layer profiles. Results of the analytic stability analysis

are validated by comparing them with results from a larger linear model. For an appropriate

Ekman depth, a complete set of transition curves is given in forcing parameter space for roll

modes driven both thermally and dynamically. Preferred orientation angles, horizontal

wavelengths and propagation frequencies, as well as energetics and wind profile

modifications, are all shown to agree rather well with results from studies on Ekman layers as

well as with studies on near-neutral and convective atmospheric boundary layers.



1. Introduction

Observational evidence of stable secondary flows in the planetary boundary layer is

abundant. Early scientists (Langmuir 1938) noted that long rows of seaweed floated parallel

to the wind, and Woodcock (1942) observed that the soaring patterns of seagulls correlated

with convective updrafts. More recently, satellite pictures have shown lines of sand dunes in

the Sahara aligned with the prevailing winds and numerous examples of cloud streets during

cold air outbreaks over water (Brown 1980). Atmospheric roll circulations consistently occur

in boundary layers having a slightly unstable stratification and moderately strong winds.
d,,

Typical wavelengths for these rolls range from two to eight km and are about threetimes the

circulation depth; roll orientations are approximately 15" tothe left of the geostrophic flow;

phase speeds average one to two m/s; and propagation periods may be from 15 rain to 2 hrs

(Brown 1972; LeMone 1973).

As reviewed extensively elsewhere (Brown 1980; Stensrud 1987a), roll circulations are

driven by both convective and dynamic instability mechanisms. Convective instability

produces Rayleigh/B_nard circulations when a vertical potential temperature gradient exists

at the surface. For wind speeds greater than a few meters per second, these thermal cells

align in linear cloud bands that are nearly parallel to the direction of mean wind shear

(Kuettner 1959, 1971). Studies of neutral atmospheres (Lilly 1966; Failer and Kaylor 1967)

indicate that two dynamic mechanisms can also induce secondary flows. The inflection point

instability mechanism generates roll circulations when sufficient energy is extracted from the

shear in the roll-perpendicular wind component. In contrast, rolls excited by the parallel

instability mechanism require Coriolis turning to extract energy from the roll-parallel wind

component; typically, the Coriolis conversion terms are much smaller in magnitude than are

the other energy contributions, and so the parallel instability mechanism is believed to be of

lesser importance in the atmosphere (Brown 1972; LeM0ne 1973, Brfimmer 1985; Chlond
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1987). Brown (1980) notes that the convective and inflection point instability mechanisms

appear to be sufficient to explain most geophysical lineal flow patterns.

Each of these mechanisms has been studied extensively using a variety of theoretical

approaches. Lilly (1966) and Brown (1970) investigated the dynamic mechanisms using

linear models based on the partial differential equations for the neutral Ekman boundary

layer. Etling (1971), Brown (1972), and Asai and Nakasuji (1973) are among those who

utilized linear partial differential models to study the mixed convective/dynamic instabilities

of an Ekman layer, while others, including Kuo (1963), Asai (1970a, 1970b, 1972), Kuettner

(1971), Sun (1978), and Shirer (1980) considered the linear boundary layer responses to other

sheared flows. In addition, high resolution nonlinear models have been developed for

numerical study of both the Ekman layer (e.g. Failer and Kaylor 1966, 1967) and more

general boundary layers (e.g. Failer and Kaylor 1969; Sommeria and LeMone 1978; Mason

and Sykes 1980, 1982; Becker 1987; Chlond 1987; Etling and Raasch 1987). Results from the

studies mentioned above have provided a basic understanding of:

(i) the instability mechanisms responsible for roll development,

(ii) the preferred roll characteristics, i.e. orientation angles and

horizontal wavelengths associated with each mechanism,

(iii) the resulting secondary flow patterns, and

(iv) the profiles of the energetics terms, vertical transports and

modifications to the basic state.

A host of studies that incorporate measurements of observed boundary layer circulations (e.g.

Kuettner 1971; LeMone 1973; LeMone and Pennell 1976; Sommeria and LeMone 1978;

Weston 1980; Kelly 1984; Walter and Overland 1984; Becker 1987; Chlond 1987; Etling and

Raasch 1987) have in general confirmed these theoretical results.

Although the above studies have revealed a great deal about the fundamental properties

of boundary layer rolls, they have provided only snapshots of the expected behavior in the
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forcing and response parameter spaces. In particular, large, high-resolution models can not

provide a very complete picture because they can be integrated only for a limited number of

parameter values; moreover, in many cases the modeled rolls are not able to respond by

changing their orientation angle because usually this angle must be specified in advance. In

contrast, most linear models provide the response parameters as output, but they typically

are developed for study of only one, usually the Ekman, profile and so their linear stability

results can not be generalized easily to that expected for an atmospheric profile. Hence, a

simple model capable of accepting arbitrary profiles is required for investigation of observed

boundary layer flows. Existing attempts at comparing observations with model results tend

to use the observed, roll-modified wind profiles as input rather than the (probably

unobserved) pre-roll state whose instability actually led to the rolls themselves. The

sensitivity of the linear analysis to use of such incorrect profiles must be investigated further;

if significant sensitivity is found, then a simple means for estimating the probable roll

modification is needed. Therefore, a modeling approach must be used that allows

representation of the roll modes with a model large enough to capture the important dynamic

and thermodynamic modes but still small enough to study analytically.

Such a modehng approach is codified in the low-order spectral technique pioneered by

Lorenz (1963) and discussed extensively in the book edited by Shirer (1987). In these

nonlinear models, the dependent variables are represented by truncated Fourier expansions

composed of temporally dependent amplitude coefficients and spatially dependent

trigonometric basis functions. For boundary layer roll studies, the spatial characteristics are

often given by a single horizontal harmonic and one (Shirer 1980, 1986) or two (Stensrud and

Shirer 1988) vertical harmonics. The possibility of successfully using such severe truncations

is suggested, for example, by ground observations (Kuettner. 1959, 1971), examination of

satellite images (Brown 1980), time--height cross sections of tower data (LeMone 1973), and

cross sections given by aircraft data (LeMone and PenneU 1976; Briimmer 1985). Basing the



truncated modelson the complete nonlinear Boussinesq equations allows study of both single

and mixed instability mechanisms over a wide range of environmental wind shears and static

stabilities (Shirer 1986). The onset of a roll mode is represented by a bifurcation from a

motionless conductive state, and each critical forcing parameter value is given by a root of an

analytically derived polynomial equation (Stensrud 1987a). Consideration of a large range of

parameter space can therefore be performed quickly and efficiently. Moreover, because the

basic state in these models is represented by a truncated Fourier series (Stensrud and Shirer

1988), the spectral modeling approach is ideal for direct comparisons between model results

and observations, as was done by Shirer and Briimmer (1986) and Stensrud and Shirer

(1988). Although reasonable agreement was obtained between their results and observations

taken during the 1981 KonTur experiment (Br[nnmer 1985), the models were somewhat

limited because the potential roll modification of the initial background wind could not be

considered.

In order to investigate the possible modification of the initial basic state by boundary

layer rolls, we develop in sections 2, 3 and 4 a new nonlinear 14-coefficient spectral model of

two-dimensional shallow Boussinesq flow that is forced both convectively and dynamically.

In section 5 we qualitatively compare our results with those of previous theoretical and

observational studies, and in section 6 we investigate the sensitivity of the stability results to

the use of roll-modified profiles. In our study, we use an Ekman profile because it has been

used in the vast majority of previous theoretical studies; however, the ultimate application of

the model is to observed atmospheric profiles.
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2. Model development

To model boundary layer roll circulations, we use the shallow Boussinesq equations

(Dutton and Fichtl 1969). Cloud streets typically form in the upward branches of these

circulations, indicating the presence of two--dimensional roll patterns. However, we may

neglect latent heating effects by assuming that the cloud area is small (Laufersweiler and

Shirer 1989). The rolls are represented by perturbations superimposed on a time-

independent, hydrostatic and horizontally moving basic state (Shirer 1980, 1986). Here, the

initial cross-roll wind profile U(z) is approximated by a truncated Fourier series involving

two vertical wavenumbers q and n:

UCz) = U0 + UI sinCq rZ/ZT) ÷ Us cos(q _Z/ZT)

÷ Us sin(n z'Z/ZT) + U4 cos(n z'Z/ZT) (2.1)

where z T specifies the height of the domain. The coefficients Ui are found from appropriate

Fourier integrals, as described in section 5. As a first--order approximation, the initial

temperature profile To(z) varies linearly with height and is defined in two parts:

To(z) -- T1 ÷ Tf- (Tsa-7eZ) % (Tlb-Tsa)(ZT-Z)/Z T (2.2)

The temperature T1 represents the contribution owing to the environmental lapse rate 7e and

the temperature Tf is a vertically distributed surface forcing contribution based upon the

difference between the lower boundary temperature Tlb and the surface air temperature Tsa.

We assume that the perturbations possess a two--dimensional structure and so neglect

all roll-parallel variations. Thus, the horizontal and vertical equations of motion may be

combined into a single vorticity equation using the following form for the stream function:

o_/_z -- -u' and c9_/bx = w'. We also make the standard assumption (e.g. Brown 1970)

that the Coriolis terms are small in magnitude and so do not contribute significantly to roU



development. Although Brown (1970) proposed a profile-modification mechanism that

depended on the Coriolis parameter in his mean wind equations, we investigate here whether

a more rapid adjustment mechanism is possible that depends only on the nonlinear coupling

terms. Evidence for relatively rapid changes to observed cloud streets, implying rapid

changes to the background profiles, is given by Br_mmer (1985). The above simplifications

are strictly valid provided that the perturbations reach a steady state within a short time

scale, two to four hours, and that only moderate supercritical forcing rates are considered in

the temporal integrations.

The horizontal domain is infinite and cyclically continuous at x = 0 and x = L, where L

is the roll wavelength. Vertically the domain ranges from z = 0 to z = z T. For simplicity

these boundaries are assumed to be rigid, stress-free and perfectly conducting. In

dimensionless variables denoted by an asterisk, we have a domain defined by 0 <_x* < 2v and

O<z*< _.

Using the above assumptions, we derive a partial differential system containing

equations for the perturbation stream function _ and perturbation temperature T. We write

the dimensionless equations representing boundary layer flow as (Stensrud 1987a;

Haack-Hirschberg 1988)

Re_- _2U* "_-r2-P w_ * =o (2.3)_p

(2.4)
a

where the tilde denotes a dimensionless Laplacian operator, and K* denotes a dimensionless

Jacobian operator.
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The dimensionlessformslead to two forcing parameters in (2.3) - (2.4). The Reynolds

number Re is given by

Re= [V(ZT) {ZT/_ (2.5)

and represents dynamic forcing imparted by the basic wind. The Rayleigh number Ra is

given by

Ra = Ral % Raf = [(Te-7d)Z T + (Tlb-Tsa)] gZTS/OTsaw; (2.6)

and represents thermodynamic forcing. Here, we have separated the thermal forcing into two

terms in order to define the energetics (section 3) and to aid eventual application of the model

to the atmosphere: Ral < 0 is the slightly stable boundary layer contribution that is

proportional to the positive potential temperature gradient or equivalently to the difference

7d-% between the dry and environmental adiabatic lapse rates, and Raf is the thermal

forcing contribution that is proportional to the difference Tlb-Tsa between the lower

boundary and surface air temperatures.

Three other dimensionless variables appear in the system (2.3) - (2.4). The eddy

Prandtl number P = v/_ is the ratio of the constant eddy viscosity v and the constant eddy

thermometric conductivity _; as noted by Laufersweiler and Shirer (1989), this assumption is

reasonable for modeling boundary layer rolls. Although difficult to estimate, we may use the

results of Br_mmer (1_85) to guide our choice of a value for _, normally atmospheric values of

P are assumed to be near 1. The roll aspect ratio a is defined as

2z T
a=-- (2.7)

L

in which the domain height zT is generally chosen to be the cloud top or inversion base, and

the roll wavelength L is obtained from the value of a. The variable U*(z*) represents the

dimensionless cross-roll wind profile. Owing to the dimensionless forms chosen, we have the



constraint IU*(_r)[ = 1. In this system, the roll-paranel wind component V*(z*) has been

decoupled via the ehmination of the Coriohs parameter and the assumption of two-

dimensionality. Thus we are not considering some longitudinal contributions that may be

important.

Using the formula,

UCz) - UsCz) sin(/_ ) - VsCz) cos(/_) (2.s)

we may rotate the cross-roU winds into a standard coordinate system for which the eastward

Us(z) and northward Vs(z) wind components are labeled with the subscript s (Fig. 1). Here/_

is the roll orientation angle that is defined to be the angle between a standard reference

direction Xs and the roll axis y; thus, for example, when/3 = 0", U -- -Vs. Positive values are

measured counterclockwise, negative values clockwise. For a given wind profile, the values of

a and/3 represent geometric characteristics of the modeled roll circulations. Because the

cross-roll wind U(z) changes as the value of/3 is changed, the two-dimensional solutions can

react to the complete horizontal wind profile by choosing an optimal angle/3p. In this way we

are able to incorporate some aspects of both horizontal dimensions into the modeled dynamic

forcing.

Fourier expansions, composed of temporally dependent amplitudes and spatially

dependent trigonometric functions, are used to represent the dependent variables _p* and T :

#(x.,,..,t.) = _(x.,,..,t.) + ¢_(z.,t.)

= [_t(t*)sin(x*)sin(qz*)+ _2(t*)cos(x*)sin(qz*)

+ _._(t*)sin(x*)sin(nz*)+ _4(t*)cos(x*)sin(nz*)]

+ [_5(t*)sin((q-n)z*)+ _6(t*)sin((q+n)z*)]
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T*(x*,..,t.) " • • * "-- Tr(x ,z ,t ) -t-Tb(Z*,t*)

= [T,(t*)cos(x*)sin(qz*)+ T2(t*)sin(x.)sin(qz*)

+ T_(t*)cos(x*)sin(nz*)+ W4(t*)sin(x*)sin(nz*)]

+ ITs(t*)sin((q-n)z*)+ T6(t*)sin((q+n)z*)

+ Tz(t*)sin(2qz*)+ Ts(t*)sin(2nz*)] (2.1o)

The roll solutions _ and T: are given by the eight terms involving spectral components ¢1
$

through ¢4 and Tz through T4, while the nonlinear modifications _ and T b of the initial

wind and temperature profiles are given by the six horizontally constant terms involving

components Cs, ¢6 and Ts through Ts. To permit horizontal roll propagation, both sine and

cosine functions of x* are required (Pyle 1987), while to satisfy the vertical boundary

conditions, only sine functions of z* are used. Two general wavenumbers, q and n, are

included in the vertical representation of (2.9) - (2.10) for study of the inflection point

instability and for improved representation of the thermal instability, which requires at least

one harmonic (Stensrud 1987a). Although the above truncations are sufficient for the

approximation of most simple flow patterns, more spectral modes would be needed to

quantify completely the initial profile U(z) and the solutions at larger supercritical values of

the forcing. In section 5, we verify that the Elanan profile we study produces stability results

that are not sensitive to increased vertical resolution in the model.

Upon substituting the expansions for ¢* and T* into (2.3) - (2.4) and integrating

appropriately over the domain, we obtain the 14 time--dependent spectral equations given in

Appendix A. We note that the nonlinear terms in the spectral equations (AS) - (A6) and

CAll) - (A14) for the profile modification coefficients correspond to the usual relations

_tJ*/at* = -_';-_/0z* and t_T_/Ot* = -_w*T*/&*, where the overbars denote horizontal

averages (e.g. Chlond 1987). Definitions for each of the coefficients ai, bi, ci and di in these

equations are shown in Table A1. Coefficients ci, multiplying the dynamic forcing parameter
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Re, contain the Fourier coefficients Ai and Pi of the dimensionless cross-roll wind profile

U*(z*). The Fourier integrals are defined in Table A2. Values for Ai and Pi may be obtained

from either idealized or observed wind profiles. Here, idealized results using the Ekman wind

profile are analyzed, while in a companion paper, observational results from the 1987

stratocumulus experiment FIRE are considered; a preliminary report of these results is given

in Shirer and Haack (1990).

3. Energetics

The dimensionless Boussinesq system (2.3) -(2.4) contains sources and sinks of both

available potential AE and kinetic KE energies that contribute to the growth and

development of roll circulations. Sources of roll energy are of both thermal and dynamic

type, while sinks include eddy dissipation and roll modifications of the initial background

profiles. These individual energy contributions and the interactions between the secondary

and background flow may be analyzed by separating the dimensionless energetics

components into four parts: roll kinetic KER and available potential AER energies, and

background kinetic KEB and available potential AEB energies. Fundamentally, the

available energy definitions change with the sign of R.a = B.al + B.af in (2.6).

A common environment for secondary instability is produced when cold air overspreads

warmer water. These conditions create strong capping temperature inversions for which a

constant domain height zT is appropriate. Typically in this case, the boundary layer has a

slightly stable initial lapse rate (B.al < 0), and buoyant forcing at the sea surface (Raf > 0).

When IRaf] > ]Kal I, the value of the total thermal forcing rate Ra is positive, and

contributions from both thermal and dynamic sources can force secondary instabilities;

conversely, when ]Raf I < IRa1], the value of Ka is negative, and only dynamic sources can

force the instabihties.
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Here we examine the case Ra > 0 for which both roll thermal generation and AER/KER

conversion, or heat flux, terms are obtained. Although similar formulations of the energetics

have appeared elsewhere (e.g. Kaylor and Failer 1972; LeMone 1973), we include our version

here to make clear the sources and sinks of energy in the present model, with particular

attention given to the origins of the profile modification terms. The appropriate definitions

for KER, AER, KEB and AEB are

KER=½ [2r[_" 1_12 dx.dz. (3.1)
"0 -0

AER = _]_ [ 1 r2_'r _" *_L_ J o J o P Tr dx*dz*] (3.2)

=½r= r P U*-_z,] 2 dx*clz* (3.3)
-0 -0

1 r 1 r21r r _- P[T; + Tb] 2 dx*dz*] (3.4)AEB=_L_J0 J0

in which -aCre/az* = u_ is the modification to the initial wind profile by the secondary flow,

and Tf is the dimensionless form for Tf in (2.2). The definitions for KEB and AEB are valid

provided that I aCf_/_* [ < Re P IU*I and ITbl < IT;I, which we confirmed for the cases

examined in sections 5 and 6. The following Ra > 0 energy rate equations are obtained from

the partial differential system (2.3) - (2.4):

(HF) (RS) (Kr-MOD)

• 2_,_[ Re_, _,_ _U* 1 1KER=P_ o So T;_x*r+

-(HF) (GA) (A r-MOD)

• .2_" r Rafwr Wr K*(¢_,Tb)-AER = P I 0 / 0 -T + -ltE1 ---K_I

(3.5)

(At-DIS)

1 VT:I-Ral a ] _] dx*dz* (3.6)
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-(RS) (K b-MOD) (Kb-DIS)

2_" _ 1,>So ' ,<"= ( 1 2,bgl

-(GA) (Ab-MOD) (AD-DI S)

Raf T;_ I T" K" " 1 i_Tbll]dx,,,dz,,,AEB=PJ0 JoL--R-al _';---R"_ b (_'Tr)--Ral a

(3.7)

(3.8)

When IRa < 0,we redefineAER and AEB in a typicalway so that (-IL_)replaces(-Ra 0 in

the denominators of(3.2)and (3.4).In thiscase,the availablepotentialenergy rate

equations simplifyso that terms --(HF)and (GA) combine to form only a heat fluxterm

--(HF) in (3.6),and the term --(GA) iseliminated from (3.8).

In Appendix B, the energy rateequations (B1) - (B6) corresponding to the spectral

system (A1) - (A14) are given forthe caseRa > 0. These rateequations contain spectral

representationsof the terms labeledin (3.5)- (3.8)forthe partialdifferentialsystem. Since

we retainonly a few Fourier coefficientsinthe variableexpansions (2.9)- (2.10),the

representations ofthese energy terms are only accurate tofirstorder. As in (3.1)- (3.4),

energy contributionsgenerated by the rollperturbations are separated from those owing to

the background flow so as to elucidatethe nonlinearmodificationsof the initial

environmental wind and temperature profiles.Each term contributestothe complete energy

budget of the system, asisshown schematicallyin Fig.2. In thisdiagram, the four energy

pools are depicted,and in Table 1,each of the energy sourcesand sinksisdescribed.

From Fig.2 and Table I,we see that rollsmay extractbackground energy in the usual

manner via both mechanical generation (RS) and, in staticallyunstable boundary layers,via

thermal generation (GA); rollavailablepotentialenergy (AER) isconverted to rollkinetic

energy (KER) inboth stableand unstable boundary layersvia verticalheat flux (HF).
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Conversely, the secondary flow may alter the initial background state via terms (Kb-MOD)

= -(Kr-MOD) and (Ab-MOD) = -(Ar-MOD); typically, these terms are not displayed

because the roll and roll modification components of the response are combined. Finally,

terms (K-DIS) and (A-DIS) represent dissipation from each of the four pools of energy. The

rate of change of total roll energy E corresponding to the spectral system (A1) - (A14) may

be written as

E = KER + AER

-[(RS) + (GA)] + [(Kr--MOD) + (Ar-MOD) + (Kr-DIS) + (Ar--DIS)] (3.9)

For steady energetics, bifurcations to temporally periodic roll solutions occur when the

energy sources, given by (RS) and (GA), balance the energy sinks, given by (Kr-MOD),

(Ar---MOD), (Kr-DIS) and (At--DIS). Values for E and for each of the individual energy

terms are calculated in section 5b2 from solutions to the nonlinear spectral model.

In the following section, we outline how we locate in (Ra,Re)-parameter space the

transition curves representing each of the possible roll instability modes. We also discuss the

application of a higher resolution linear model used in the verification of the two-vertical

wavenumber spectral model results.

4. Linear stability analyses

In this section we first outline the analytical linear stability analysis that is used to

approximate the onset of roll modes in our spectral model, and then we discuss the more

accurate numerical stability analysis of the linearized Boussinesq equations that is used to

find an Ekman profile whose stability properties can be captured relatively well by our

model. As noted by Stensrud (1987a), in both cases the roll modes of interest are found by a

linear analysis of the motionless conductive solution.
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a. Bifurcation equation for the roll modes

As we noted in the introduction, a major advantage of use of low-order spectral models

is that many of their solutions can be obtained analytically, thereby allowing a thorough

exploration of roll behavior in forcing parameter space. Although linear stability analysis is a

commonly used technique, the determination of the bifurcation equation governing the onset

of the roll modes is somewhat complicated, and so we review briefly how we find this

equation.

The linear system obtained from the spectral model (A1) - (A14) contains six equations,

originating from (A5) - (A6) and (All) - (A14), that are purely dissipative and so do not

contribute to a change in stability. The remaining eight may be written as two sets of four

complex equations in which one set is the conjugate of the other. Thus, only one set of four

equations need be analyzed since it contains the same stability information as the other set

(Pyle 1987). The form exp[_t*] is assumed for a perturbation expressed in the new complex

variables _bj and Tj; the real parts of the eigenvalues )_ indicate growth or decay of this

perturbation and the imaginary parts represent its temporal periodicity. A nontrivial

solution is found when the determinant of the matrix of coefficients vanishes, which in this

case produces a complex fourth-order characteristic equation in )_ (Haack-Hirschberg 1988).

Transitions to temporally periodic solutions are found by assuming that the real part of

vanishes and that the imaginary part of ,_ is the dimensionless limiting frequency w* of the

branching solution. These Hopf bifurcation points (e.g. Marsden and McCracken 1976; Pyle

1987) indicate critical values Rac and Rec of the forcing rates beyond which propagating roll

solutions develop. Minimum values of Rac and Rec provide the smallest forcing values

needed for secondary instability and are presumably the first values reached as the

atmosphere becomes unstable.
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Substitution of A -- io_ into the complex fourth-order characteristic equation yields two

real equations in o_, Rac and Rec. Upon combining these equations via the method of

eliminants (Stensrud 1987b), we remove the frequency and obtain a Hopf bifurcation

equation that is of sixth-order in Rac (Haack-H/rschberg 1988). The coefficients of this

equation were determined analytically with the program FORMAC on the PSU IBM

3090-600s. They are lengthy functions of Rec, aspect ratio a, orientation angle 3, vertical

wavenumbers q and n, Prandtl number P, and Fourier coefficients Ai and Fi of the basic

wind. For a given arbitrary wind profile, we choose values for q, n and P and cycle over

appropriate ranges for Rec, a and _. Minimum values of the critical forcing rates Rac and Rec

are found and these give preferred roll alignments _p and aspect ratios ap. From values of

(Rac)ein, (Rec)min, 3p and ap, preferred values of the (real) dimensionless frequency

magnitude I w_ [ are also calculated; the magnitudes of the limiting dimensionless

propagation rates of the rolls are given by [c_] - [ w_l. Using the dimensional form w -

[(2_2_)/(ZTL)] a_ of the frequency, where _ is estimated to be 25 m2/s (e.g. Shirer and

Bffmlmer 1986), and the definition Icl - (L/2z') I wl, we may obtain a preferred value ]Cpl

-- (z_/ZT) I w_ I for the phase speed. When these Hopf bifurcation points are displayed in

(Ra,Re)-parameter space, transition curves for the various roll modes are produced (e.g.

Shirer 1986; Stensrud 1987a); in section 5 we find that three principal modes are possible.

b. Numerical analysis of the Boussinesq equations

Although the bifurcation equation discussed above yields analytic approximations of the

critical forcing rates and the preferred response parameters for the various roll modes, it only

incorporates the effects of five of the Fourier coefficients of the initial background wind

profile (cf. (2.1)). Because information in other Fourier terms of this wind profile may

significantly affect the values of the forcing rates or the response parameters, a more
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thorough stability analysis must be done to ensure that the two-vertical wavenumber model

(A1) - (A14) may be used successfully to examine the possible secondary flows created by a

particular wind profile. This more detailed analysis can not be done analytically, thereby

making a complete survey of parameter space tedious and computationally expensive.

The stability results produced by spectral expansions having two (2-WN), three

(3-WN), and four (4-WN) vertical wavenumbers are obtained numerically and compared

with those given by the Hopf bifurcation equation for the two-wavenumber model. The

Fourier expansions of the basic wind profile have ten terms in the (3-WN) case and 17 terms

in the (4-WN) case. Many of the terms in the 8 x 8, 12 x 12 and the 16 x 16 stability

matrices, which are associated with the (2-WN), (3-WN) and (4--WN) representations

respectively, contain spectral coefficients of the initial wind profile. However, because these

coefficients involve at most only two of the vertical wavenumbers q and n (see Table A2), it is

easy to specify the terms in these determinants merely by considering all combinations of the

relevant wavenumber pairs in the general forms given in Haack-Hirschberg (1988). Because

we normally find that the smallest wavenumbers give the best representation of an initial

wind profile, we limit our more detailed analyses to combinations of q = 1 and n = 2 in the

(2-WN) case, q - 1,2 and n = 2,3 in the (3-WN) case, and q -- 1,2,3 and n = 2,3,4 in the

(4--WN) case, where q _ n.

To find the approximations of the roll mode transition curves given by the (2-WN) and

the higher resolution (3-WN) and (4-WN) representations, we must find all the eigenvalues

of the above matrices for a large number of values for the parameters Ra, B.e, a and 8.

Specifically, a point (Ra,Re) on the transition curve as well as the associated preferred values

of a, fl and _* are obtained as follows: The magnitude of Re is fixed and the value of Ra is

gradually increased. For a particular value of Ra, the values of a and _ are varied and the

eigenvalue having the largest real part is saved in each case. The pair (a,fl) is found for which

this largest real part reaches a maximum value. A preferred bifurcation point on the
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transition curve is obtained once the magnitude of B.a is increased sufficiently that this

maximum value is zero.

If the values of the critical forcing and preferred response parameters do not vary

significantly as additional wavenumbers are added to the problem, then we may conclude

that a good representation for the instability modes has been obtained with only two vertical

wavenumbers. Although to validate a particular wind profile we must investigate a large

number of parameter values, we are guided somewhat in our choice of parameter ranges by

the analytic results given by the Hopf bifurcation equation for the two--wavenumber model.

5. Model results using the Ekman profile

To facilitate comparisons with previous studies of idealized flow, we consider the

stability results and nonlinear solutions forced by an Ekman spiral having Ekman depth D,

where z'D/4 is the height of maximum shear in the boundary layer. We define the

dimensionless eastward and northward wind components for this profile as (Shirer 1986)

$ $ $

us(,.*)= Ivgl [ ) cos(z*/D*)] (5.1)

$

V;(z,)= I Vglexp(-z,/D*)sin(z./D')

$

where D* = D_r/z T and where I Vsl is the magnitude of the dimensionless geostrophic wind

given by the constraint U_(_') _ + V_(_) _ = 1. We show below that an Ekman depth near D*

= 1 produces consistent stability results when more wavenumbers are included in the

$

analysis. To obtain D = 1, we choose D = 190 m and zT = 600 m; such a value ofz T is

typical of marine boundary layer depths (e.g. Brfimmer 1985). Because the Ekman depth D

is well below the inversion height ZT, use of constant eddy viscosity v and conductivity _ is

appropriate. We note that other authors (e.g. Faller and Kaylor 1966, 1967; Brown 1972;
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Asai and Nakasuji 1973) used infinitely deep domains and determined roll circulation depths

from the solution itself. Despite these differences, we find below that our results using a D --

1 Ekman profile agree rather well with these published results as well as with observations

reported by LeMone (1973), LeMone and Pennell (1976) and Brfimmer (1985).

Using the definitions in Table A2 with the above noted values q = 1 and n = 2, we

calculate the values of the spectral coefficients hi and Fi of the Ekman wind (5.1) - (5.2); we

also calculate the coefficients for the wavenumber pairs (q,n), q # n, given by q = 1,9.,3 and n

= 2,3,4 that are needed in the validating numerical stability analysis. When the

dimensionless form of (9..1) is substituted into the Fourier coefficient definitions (Table A2),

expressions for the Uj may be obtained to produce the following (2-WN) representation:

-_-_A2 + P2)sin(2z') + _(Pl-_ Pa)cos(2z*) (5.3)

We show in Fig. 3 the Fourier approximations calculated from (5.3) for the along-roll V --

$ $ $

U s and cross-roll U = -V s wind components when _ = 0" (cf. Fig. 1). The solid curves

represent the original Ekman wind profiles given by (5.1), (5.2) and (2.8), and the dashed

curves show the approximated profiles given by (5.3). These results indicate that an

excellent representation of the Ekman wind'can be obtained with a Fourier series having as

few as two vertical wavenumbers and five Fourier coefficients.

a. Transition curves

Having calculated values of the Fourier coefficients that reproduce the Ekman wind

profile, we next use the methods described in section 4 to perform linear stability analyses of

the conductive solution. Here and in the remaining sections, we set typical average values of

v = _; = 25 m2/s (P = 1) based on computations by Shirer and Brfimmer (1986). To obtain
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the minimum values of the forcing rates, we first find the minimum values of Rac and Rec

given by solving the Hopf bifurcation equation of section 4a for appropriate ranges of the

other parameters. The values of the aspect ratio a and the orientation angle fl are varied first

using a coarse resolution, from 0.1 __a __2.0 in increments of 0.1 and from -90" ___ __90" in

increments of 10 ° , and then on a finer grid in which a is incremented every 0.05 and _ every

degree. These results are then used to guide the higher resolution numerical analysis of

section 4b.

For the case D = 1, we compare in Fig. 4a the transition curves for the two-

wavenumber (2-WN) (solid), three--wavenumber (3-WN) (dashed) and four-wavenumber

(4-WN) (dotted) approximations obtained using the numerical method described in section

4b. It is this value of Ekman depth that yields the closest agreement among the three

transition curves. Along these curves, the preferred values of a, 8, and _r _ are given. We see

clearly from the figure that the transition to secondary flow is well represented by the

(2-WN) curve when Re is less than 60 or so, but that this curve begins to depart rapidly from

the other two as the magnitude of Re is increased above 60. The (3-WN) and (4-WN) curves

remain close for wider ranges of Ra and Re. This result was found generally for a large

number of Ekman depths and implies that a (3-WN) model may be more generally applicable

(e.g. Stensrud and Shirer 1988). In the range 0 __Re __60, the orientation angle results among

the three approximations differ by at most 4" and the aspect ratio values by no more than

0.1, indicating very consistent results. Moreover, the response parameter values themselves

compare well with those found by others who theoretically studied Ekman flow (e.g. Lilly

1966; Failer and Kaylor 1966; Brown 1970, 1972; Etling 1971; Asai and Nakasuji 1973), and

by those who observed the atmospheric boundary layer (e.g. LeMone 1973; Walter and

Overland 1984; Briimmer 1985). For example, for modes near neutral stratification (Ra ~ 0),

we obtain the values ap ~ 0.6, Lp ~ 2000 m ~ 10D, _ ~ 10" and I CPl ~ 0,2 m/s that are

consistent with those reported by the above authors.
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We conclude that for this Ekman profile, we may use the model (A1) - (A14) to study

the modes developing when Rec < 60. However, we emphasize that this cutoff value is not a

general one; each wind profile must be checked individually. We may also conclude that if

the preferred orientation angles produced by using a roll-modified Ekman wind profile as the

basic state differ by more than 4" from those given by the pre-roll profile, then we have

evidence that the errors obtained using observed profiles as basic states might be more likely

attributable to the contamination of the observations by the roll solutions than to the limited

truncation used to develop the model (A1) - (A14). We return to this point in section 6.

In Fig. 4b we show the transition curves obtained from the bifurcatio n equation for the

two--wavenumber spectral model, as described in section 4a. Aside from minor differences in

frequency -- which are more accurately given by the bifurcation equation m these values are

equivalent to those given in Fig. 4a for the (2-WN) numerical analysis of the linear model. In

Fig. 4b we separate the transition curve into the two principal modes: the thermal--q mode

(dashed curve) that produces a solution dominated by wavenumber q = 1 and is associated

with Rayleigh-B_nard convection when U(z) = 0, and the inflection point mode (solid curve)

whose transition curve passes through the neutral stratification value Ra = 0. A third mode

was also found at large values of the Reynolds number (Re > 100) and in strongly stable

stratification (Ra < 0); however, comparison of this dynamic mode with ones produced by

the higher resolution models revealed that, while appearing in all three analyses, it

nevertheless can not be well represented by our model. Thus, we restrict attention to values

of Ra near those for neutral and unstable stratification.

As in Fig. 4a, the preferred values of the response parameters are given. We note that

with increasing values of Rec, the thermal--q mode is replaced by the inflection point mode

near neutral stratification (Ra = 0). For a variety of wind profiles, a smooth transition from

the thermal--q to the inflection point mode occurs, indicating a possible link between these

two instability mechanisms. Other thermal modes associated with wavenumbers n = 2 and
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combinations of q and n are also common, but are not shown here because they occur at

larger values of the forcing parameters and are therefore of little interest. Hereafter, we refer

to the thermal--q mode as simply the thermal mode.

Two paths denoted by arrows and labeled with points A and Bi are drawn in Fig. 4b;

these paths, which we consider below, represent two possible evolutions of the atmosphere as

the values of Ra and Re increase. In each case, the value of Ra > 0 is a statically unstable one

so that the resulting circulation is both thermally and dynamically forced, and the value of

Re _ 60 is in the range for which the model is valid (Fig. 4a). We summarize in Table 2 the

minimum values (Kac,Rec)min of the critical forcing rates needed for roll development and the

supercritical values (Kac,Rec)sup of the forcing rates chosen at the labeled points. In section

6, we ascertain how the rolls modify the initial profiles of wind and temperature by examining

the effects of increasing the buoyant forcing, as given by increasing the value of Ra

incrementally from point B1 to B_ to B3 in Fig. 4b. In the following subsection, the solutions

corresponding to points A and Bi are used to compare the roll stream function and

perturbation temperature patterns, the energetics profiles, and the vertical fluxes of heat and

momentum produced by the inflection point and thermal instability modes.

b. Roll soIutio_

To examine the nonlinear solutions given by the values of the forcing rates at points A

and Bi in Fig. 4b, we choose values of a and fl near the preferred values on the transition

curve closest to each supercritical point (see Table 2). We then numerically integrate the

nonlinear equations (A1) - (A14). The rate of change of total roll energy is calculated from

(3.9) using the definitions in Appendix B, and in all cases we find that energetically steady,

temporally periodic roll solutions and steady background modifications occur. As noted

earlier, the decay of the perturbations to a stable solution typically requires less than four
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hours, which justifies the neglect of the Coriohs terms. Figure 5 shows a schematic

representation of the stream function pattern produced for a small, positive value of the

preferred orientation angle tip. In this case, the roll circulations tilt downstream and

propagate at a fixed amphtude in the -x direction. The basic structure and tilt of these rolls

are consistent with those shown, for example, by Failer and Kaylor (1966), Brown (1970,

1972) and LeMone and Pennell (1976).

1). Stream function and perturbation temperature patterns

At a fixed time, the dimensionless roll stream function patterns _ (from (2.9)) that

correspond to the four points A and Bi are shown in Fig. 6. All patterns propagate from right

to left in the direction of the cross-roU wind (Fig. 3b). As the dynamic and thermodynamic

forcing rates Re and Ra are increased from point BI to A (Fig. 6b to 6a), we note that the

circulation tilt increases downwind in response to the greater wind speeds at the top of the

domain (cf. (2.5)). The effects on the _r fields of increasing only the thermal forcing rate Ra

are shown in Figs. 6b to 6d. Although the circulation patterns remain relatively unchanged,

the corresponding dimensional maximum upward velocities increase from about 0.1 to

1.1 m/s. Qualitatively, these rolls have characteristics similar to those given by Brown's

(1970) model of neutrally buoyant secondary flow (cf. his Fig. 11, in which propagation

occurs from left to right) and by Brown's (1972) model of stratified flow (cf. his Figs. 8 and 9;

propagation is also from left to right).

The dimensionless roll perturbation temperature patterns T r (from (2.10)) that

correspond to the points A and Bi are shown in Fig. 7. In each case, positive temperature

perturbations correspond to regions of upward motion in Fig 6. Direct thermal circulations

are expected for cases of statically unstable stratification and produce the positive vertical

heat fluxes shown below in Fig. 10a. As the thermal forcing rate R.a is increased from point
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B t to B s (Fig. 7b to 7d), more efficient upward transports of heat are obtained by the reversal

in the tilt of the T_ field from upwind to downwind. Owing to the Boussinesq approximation,

the temperature perturbation in our model best corresponds to either the density

perturbation or the potential temperature perturbation in observations; the tilt in the

temperature perturbation patterns in case B _ most closely matches the observed cross

sections through thermally forced rolls given by LeMone and Pennell (1976; cf. pv in their

Fig. 12) and Briimmer (1985; cf. 0R in his Fig. 7b).

Comparison of the roll solutions with LeMone's (1973, her Table 2) roll observations

indicates that the circulation characteristics agree well with her values. LeMone (1973)

estimated the maximum roll circulation speeds U_ax to be between 0.077 IVg I and 0.15 ]Vg I .

Using appropriate values in the expressions (2.5), (5.1) and (5.2), we obtain magnitudes of Vg

for Re = 30 and 60. From the roll solutions we calculate values of U_ax = I-0¢/0z Imax to be

0.071Vg I for case A and 0.191Vg I for case B1. Moreover, the cross-roll propagation velocity

Cp, which ranges from -0.2 to -0.3 m/s (Table 2), is of the same sign and order of magnitude

as the boundary layer average cross-roll wind velocity U, in agreement with results usually

found in observations (e.g. LeMone 1973) and models (e.g. Becker 1987; Chlond 1987). Thus,

we conclude that the 14--coefficient spectral model represents rather well the essential

characteristics of near-neutral two--dimensional secondary flow.

2). Energy budgets and vertical transports

The magnitude and sign of each energy term in (B1) - (B6) provide useful information

about the relative importance of the mechanisms responsible for producing roll circulations

and for modifying the initial wind and temperature profiles. These terms may be calculated

from the solutions to the integrated spectral equations (A1) - (A14). First, values for the

thermal surface forcing Raf and the environmental stratification Ral must be obtained from
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the value of B.a. Using the definition (2.6) and assuming Tsa = 16" C and near-neutral

conditions (_'d - % = 0.1 "C/600 m), we calculate a value of Ral ~ -10. Then Raf (and so

Tlb) is determined by subtracting Ral from the given value of Ra.

For points A and Bi in Fig. 4b, we form energy budget diagrams in Fig. 8 showing the

magnitudes of the sources, sinks and conversions of energy. Both a mechanical source of

energy, via the Reynolds stress term (RS), and a thermal source of energy, via the generation

term (GA), contribute to roll development. Consistent with the fact that Ra > 0, in all cases

the heat flux term (HF) is positive so that energy is converted from roll available potential to

kinetic forms. Comparing the magnitudes of the energy sources for points A and B 1reveals

that mechanical generation is the larger source term for rolls driven by the inflection point

instability mechanism (Fig. 8a), while thermal generation is the larger term for rolls excited

by thermal instability (Figs. 8b,c,d). As the thermal forcing rate is increased from point BI

to B3 (Figs. 8b to 8d), we note a marked increase in the magnitude of the (GA) term, as well

as greater channeling of roll energy to the background flow via the modification terms

(Kb-MOD) and (Ab-MOD). These roll modification terms become important at larger

supercritical forcing rates. In case B2 for example, the ratio of the modification terms to the

source terms is roughly one-half. Thus we might expect that significant modification to the

initial wind and temperature profiles would be possible once the thermal forcing rate is

increased sufficiently.

Figure 9 shows vertical profiles for every term contributing to the energy budgets in

Figs. 8a,b,c. Solutions for points A (inflection point mode), B1 and B2 (thermal modes)

correspond to dashed, solid and dotted line types respectively. Energetics profiles for the

supercritical point B3 are omitted since they contain shapes consistent with those shown for

BI and B2, but with larger magnitudes. Asai and Nakasuji (1073) present energetics profiles

in their study of the stability of the Ekman boundary layer. Although their upper boundary

is infinite, vertical profiles of Reynolds stress, generation and dissipation terms,
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corresponding to the inflection point and convective modes, agree well with those shown here.

Briimmer's (1985) energetics analyses of KonTur data include Reynolds stress (RS) profiles

that indicate a roll kinetic energy source in the lower half of the domain near the altitude of

the inflection point in the cross-roll winds, as well as generation (GA) profiles that reveal roI1

available potential energy in the middle of the domain where the magnitudes of the

perturbations are greatest. Both of these results are in agreement with those shown here in

Fig 9.

The dimensional profiles of the horizontally averaged, roll-induced vertical heat (wT)

and momentum (u--W) fluxes are shown in Fig. 10. These flux profiles are consistent with

those given by Asai and Nakasuji's (1973) study of Ekman flow, by Etling and Raasch's

(1987), Becker's (1987) and Chlond's (1987) higher resolution numerical studies of boundary

layer circulations and by LeMone's (1973) and LeMone and Pennell's (1976) observational

studies of roll vortices. That is, in a statically unstable environment, positive heat fluxes

represent a stabilizing process in which the roll perturbations transport relativeIy warmer air

upward and cooler air downward. Although most investigators find positive cross-roll

momentum fluxes, our results in fact have a familiar form that is consistent with the

downwind tilt of the roll circulations (Figs. 5 and 6). Because the changes o_/at in the

initial cross-roll wind are given by flU/0t = -a(u--'_/Oz (e.g. Chlond 1987), the momentum

flux profile should lead to an increase in the cross-roll wind speed below 300 m and a decrease

above this level. This corresponds to down-gradient transports of cross-roll momentum,

consistent with the results of Failer and Kaylor (1967) and Brown (1970), and with the

results of section 6.
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6. Modifications to the basic state profiles

We noted earlier that a fundamental characteristic of nonlinear roll circulations is that

they can significantly alter the basic state profiles. Failer and Kaylor (1967) and Brown

(1970) produce Ekman spirals that have been modified by the secondary flow. According to

Brown (1980), roll modifications may change the basic flow by as much as 10 to 20%. In each

case, the altered flow has maximum velocities and is more closely aligned with the direction

of the geostrophic wind at low levels, and becomes supergeostrophic at upper levels (Brown

1970). These results suggest that cross-roll modifications are channeled via the Coriohs force

into the along-roll wind component, thereby increasing the roll-parallel flow and reducing

the roll-perpendicular flow. In contrast, the numerical studies of Chlond (1987) and Etling

and Raasch (1987) indicate that modification occurs predominantly in the cross-roll

component of the basic wind profiles. Each of the above models differs from the present one

by the inclusion of the longitudinal velocity component and Coriolis turning. Thus, their roll

perturbations may alter the roll-parallel component of the initial basic wind profile, while

only the roll-perpendicular component may be altered in the present model. We are

therefore examining the roll modifications that can occur on a short time scale, before

Coriolis turning can become significant. We find below that with increased supercritical

forcing rates, the secondary flow decreases the cross-roll shear near the height of the

inflection point.

For small supercritical forcing rates, such as those given by points A and B1 in Fig. 4b,

the dimensional modifications to the initial background wind and temperature profiles are

insignificant since they change these profiles by only a few percent. However, for the points

B2 and B3 that are much farther to the right of the transition curve in Fig. 4b, the spectral

components _5, _6 and T5 through Ts that represent modifications to the basic state increase

significantly in magnitude. From points B I to B s, the percentage of energy input that is
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converted to background energy, via terms (Kb-MOD) and (Ab-MOD), grows markedly,

and so the rolls may begin to noticeably change the mean flow (Fig. 8). Although for short

time scales the neglect of Coriolis forcing is a valid approximation, solutions far away from

the transition curve may require more spectral modes than we have included in order to

accurately resolve the nonlinear interactions that lead to a modified basic state. Therefore,

we only examine the general structure and trends in these modified profiles, with emphasis on

their potential effect on the results of a linear stabihty analysis.

Shown in Fig. 11 are the dimensional profiles of the perturbation temperature

modification Tb(Z ) (from (2.10)) for the solutions at points B1, B2 and B3 (sohd, dotted and

dashed curves) on the lower path in Fig. 4b; because the initial temperature profile has a

near-neutral lapse rate of approximately 9.6 ° C/kin, the temperature modification shown is

equivalent to that for potential temperature. As expected, the roll perturbations act to

neutralize the interior portion of the unstably stratified boundary layer by creating more

stable background temperature profiles; in each case the lower portion of the domain is cooled

and the upper portion is warmed. Corresponding to case B3 in Fig. 11, we use the

roll-modified background lapse rate near z = ZT/2 to calculate the modification to the

thermodynamic forcing rate by the rolls. From its original value of Ra = 50, the thermal

forcing rate is decreased to a near-neutral value of-1. This result is consistent with the

occurrence of direct thermal circulations and positive heat fluxes associated with thermally

forced rolls. However, the magnitude of this temperature modification is not likely to be

measurable in the atmosphere nor great enough to affect the linear stability results given in

section 5a.

Conversely, alterations to the basic flow by the rolls do appear to be significant. The

effects on the basic state wind profile of increasing the supercritical forcing rates are shown in

Fig. 12. These profiles represent dimensional profiles of the initial background cross-roll

wind U(z) (from (5.1), (5.2), (2.8)), the wind modification u_ =-0_/_ (from (2.9)), and
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the modified cross-roll background wind U + u_ for the solutions at points B 1, B_ and B s.

We recall that the cross-roll component is determined from (2.8), where fl - 6" is the

preferred roll orientation on the transition curve near point B 1(Table 2). As shown in Fig.

12b, the roll perturbations yield profiles that have increasingly more negative slopes as the

supercriticality increases from case B I to B3; the mean wind direction is not changed,

however. When summed with the original cross-roll Ekman profiles given in Fig. 12a, the

modified background wind profiles in Fig. 12c are produced. As mentioned above, we

conclude that these profile modifications are consistent with the momentum fluxes given in

Fig. 10b. For the forcing rates corresponding to case B3, the roll-induced shear is six times

that of case B, and leads to substantial modification of the original basic flow. Consequently,

the wind structure throughout the domain can be altered markedly by the roll circulations,

even in the absence of the Coriolis force.

In Fig. 13, the dimensional original (solid) and case B2 modified (dotted) Ekman spirals

in roll coordinates are shown. As found by Faller and Kaylor (1967) and Brown (1970), the

cross-roll wind speed of the modified profile is reduced significantly, so that the turning angle

in the modified Ekman spiral is decreased. In addition, the modified spiral deviates less from

the geostrophic wind at low levels than does the initial wind, producing a result that is also

consistent with those of Brown (1970, his Fig. 14).

In theory, the wind profiles in Fig. 12c correspond to roll-modified winds that might be

measured during cloud street observations. When values for the Fourier coefficients are

calculated from these profiles, considerably different stability results might be obtained than

those shown in Fig. 4b, for which the original, pre-roll Ekman profile was used. We examine

this possibility by using the roll-modified background wind profile associated with point B

to obtain the transition curves and preferred values of roll characteristics ap, tip, _v_ that are

shown in Fig. 14. Comparing Figs. 4b and 14, we note that only a thermal mode (dashed

curve) may excite roll development in the range 0 _( Re ( 60 for which the model is valid.
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Owing to the decreased shear near the inflection point in the modified Ekman profile, the

inflection point mode disappears completely from the stability diagram. More importantly,

the values of preferred orientation angle/_p differ between 10" and 14" from those shown in

Fig. 4b and indicate a larger than expected deviation (18") from the geostrophic wind

direction. Such large changes are not entirely related to the use of a limited truncation

because they are somewhat bigger than the changes shown in Fig. 4a between the (2-WN)

and (4-WN) stability analyses of the original Ekman profile. In some cases involving

observed wind profiles taken during cloud street events, use of the roll-modified winds leads

to errors up to 35" in the estimates of _p (Shirer and Haack 1900). Significantly, these

findings indicate that an appropriate amount of hypothesized roll-induced shear must be

removed from an observed, cross-roll wind profile in order to determine the initial, basic

state winds.

7.Summary and conclusions

In this study, a 14--coefficient nonlinear spectral model was used to investigate boundary

layer roll circulations forced by Ekman flow. The Fourier representation of the wind,

including two vertical harmonics and five Fourier coefficients, approximated the F&man

spiral rather well. Decay of small perturbations tostable roll solutions required less than four

hours, which justified the neglect of Coriolis terms in the model. Thus, longitudinal sources

of energy, and consequently the parallel instability mechanism, were eliminated. From the

results of a linear stability analysis, characteristics of the convective and/or dynamic

instability mechanisms were studied. This analysis was shown to be valid for 0 _<Re <_(50 by

comparing its results with those obtained from a numerical stability analysis of linear models

having three and four vertical wavenumbers in the variable expansions.

The linear analysis produced transition curves in the forcing parameter space (Ra,Re)
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correspondingto each instability mechanism. Here Ra is the B.ayleigh number that

represents thermodynamic forcing from surface heating, and Re is the Reynolds number that

represents dynamic forcing from the cross-roll wind shear. These curves corresponded to the

minimum critical forcing rates beyond which stable roll solutions occur. In addition,

preferred aspect ratios, frequencies, and roll axis alignments relative to the geostrophic wind

were determined.

From the analysis of an Ekman wind profile having dimensionless Ekman depth D*= 1,

we found three possible roll modes. The thermal or convective mode was only preferred for

cases of unstable stratification (l_.a > 0) and weak dynamic forcing (small values of Re). For

near-neutral stratification (Ra ~ 0), the thermal mode was replaced by the inflection point

mode. The preferred roll characteristics agreed well with those obtained from other

boundary layer studies of Bkman flow (FaUer and Kaylor 1966; Brown 1970; Ethng 1971;

Asai and Nakasuji 1973), and observational studies of roll vortices (LeMone 1973; LeMone

and PenneU 1976; Br_mmer 1985).

A new dynamic instability mechanism, the shear mode, occurred only in statically stable

atmospheric conditions and for larger values of B.e. Rapidly propagating rolls, with axes

aligned at large angles to the mean wind direction and with small horizontal wavelengths,

were excited by the shear instability. However, we concluded from comparisons with higher

resolution numerical results that at least three vertical harmonics are required to model this

new mode, and so it was not investigated further.

At supercritical values of the forcing rates, temporal integrations of the model equations

yielded nonlinear solutions for the 14 spectral coefficients. These values were used to

calculate the roll patterns and vertical transports corresponding to roll circulations driven by

a particular instability mechanism. For all modes, the rolls tilted and propagated downwind

at a constant rate and amplitude. All roll-induced fluxes were down--gradient and led to

near-neutral stratification having reduced cross-roll shear. Energetics analyses indicated



32

that roll circulations excited by the inflection point mode were predominantly driven by

mechanical generation from Reynolds stress, while those excited by the thermal mode were

driven predominantly by thermal generation from surface heating.

The alterations of the wind and temperature profiles were represented by six spectral

coefficients in the model. For positive thermal forcing rates, the rolls modified the basic state

temperature by cooling the lower, and warming the upper, portion of the domain.

Dimensionally, however, this temperature change was not likely to be measurable in the

atmosphere.

The rolls were shown to significantly alter the initial wind profile in the sense found by

Faller and Kaylor (1967) and Brown (1970), but via a mechanism independent of the Coriolis

force. Use of a roll-modified Ekman wind profile gave markedly different stability results

that yielded errors of order 10" in the preferred roll orientation angle 3p. These errors are of

the size reported by Shirer and Bfftmmer (1986), in which the roll modification to the winds

was not considered. Even larger errors in 3p are possible, as demonstrated by Shirer and

Haack (1990) who investigate the influence of the rolls on the observed basic wind by

studying several hypothesized, pre-roU wind profiles for cases obtained during the

stratocumulus phase of FIRE.
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Appendix A

The Nonlinear Spectral Model

Here we list the 14 equations composing the nonlinear spectral model. The coefficients

ai, bi, ci and di are given in Table AI, and the Fourier coefficients Ai and Fi in ci are defined

in Table A2. The spectral system is given by

_t ,I= -ai_4_5 Jr a2_4_6 + biT1 + Re(Cl_2 + c_4) -P dl_1

_t,2= a1_3_s - a2_3_8 - biT_- Re(ClOt + c_3) - P d1_

_t .3= - as_2_s -{-a4_2_s + b_T3 + Re(c3_4 -{-c4_2)- P d2,_3

_t ,4= a3_i_s - a4_i_ - b_T4 - Re(c3_s + c4_i)- P d_4

_t .s= -_(_I_4- _2_3)- P d3_s

_t ,6= -_(_1_4- _3) - P d4_6

dT_ - a6(_sT4- _3T5)+ as(_3T8- _6T_)+ aT_T_ + P_ _,gi-;=

- Re(csT_ + c_T4) - dtT_

dT_

+ Re(csTi + csTs)- diT_

dTs - a_(_sT_- _IT_) + as(_iT_ _eT_) + as_sTs + Ra _3
_-_-;=

- Re(csT_ + czT4) - d_Ts

dT4
= - a_(_2Ts - _sT_) + as(_T1- _2T_) - as_4T8 - Ra _4

+ Re(csTi + czT3)-d2T4

dTs = "_¢4T2 + _2T4 - _IT3 - _3TI) - d_Ts

dTs_ -_@_T4 + _4T_ - _T3 - @3TI) -d4TsKi-_-

dTz_ -_{@=T_ - _T_) - dsTzt_-_-

(A1)

(A2)

(A3)

(A4)

(AS)

(AS)

(A7)

(AS)

(A9)

(AI0)

(AI2)

(AI3)
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dT8_ "_¢4T4 - ¢3T3) - dsT8 (AI4)8q-_-

in which Re is the Reynolds number defined in (2.5), Ra is the Rayleigh number defined in

(2.6), and P = v/_is the Prandtl number.
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APPENDIX B

Spectral Energetics (Ra > 0)

The following rate equations for the roll and background kinetic (KER), (KEB) and

available potential (AER), (AEB) energies may be obtained from the spectral system (A1)

-(A14). The individual terms are described in Table 1, and the corresponding rate equations

for the partial differential system are given in (3.5) - (3.8).

. (HF) (RS)

KER = P(TI_I-T2@ 2+T3_3-T4_4) + Re P[A2(n=-q 2)(_i@4-_s)]

(Kr-DIS)

+ (Kr--mOD)-P[(a2+q2)=(_#12+ _22) + (a2+n2)2(_32+ _42)] (BI)

• -(HF) (CA)
Raf P(TI_I-T2_ 2 +T._r--T4_4)AER = - P(TI_I-T2 _ 2 +T3@3-T4_4) + -R'E1

(Ar-DIS)

e [(a2+q')CT1'+ T,') + (an+nn)(T_'+ T4')]
+ (Ar-MOD)--Ral a

(B2)

-(RS) (K b-DIS )

KEB =-Re P[A,(nZ-q')(_1_4-_2_3)] + (Kb-MOD)-_[2(n"q)4_s ' + 2(n+q)4_62]

(B3)

• -(GA)

Raf P(TI_I-T2_#, +T3_3-T4@4) + (AB-MOD)-
AEB = --11EI

(Ab-DIS)

P [2(n_q)2T52+ 2(n+q)2T6 2 + 8q2T72 + 8n2T82]-Ral a

where the nonlinear modification terms are given by

(B4)
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(Kr--MOD)= - (Kb-MOD) =

a5(¢5¢1¢4- ¢_¢_¢s)(q-n)2+ a,(¢8¢,¢4 - ¢6¢2¢_)(q+n)_ (B5)

(Ar-MOD) =- (Ab-MOD) =

P
[as(Ts¢3Tl - T6¢4T_ + T6¢IT3 - T6¢2T4)

+ as(Ts¢3T1 - Ts¢4T_ + Ts¢lT3 - Ts¢2T4)

+ aT(T_¢ITI- TT¢_T_) - as(We¢3T3 - Ws¢4T4)] (B6)

The coefficients ai in (B5) - (B6) are given in Table A1. The dynamic and thermodynamic

forcing parameters Re, Ral and Raf are defined in (2.5) and (2.6). The parameter a is the roll

aspect ratio defined in (2.7), and P = v/_; is the Prandtl number. The Fourier coefficient As

is given in Table A2, and q and n are vertical wavenumbers.
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FIGURE CAPTIONS

Fig. 1. Rotation of the standard reference coordinate system (Xs,ys) into the roll coordinate

system (x,y). The cloud street orientation fl is the angle between the direction Xs and the roll

axis y (after Shirer 1980).

Fig. 2. Schematic energy budget diagram composed of roll kinetic (KER), roll available

potential (AER), background kinetic (KEB), and background available potential (AEB)

energies for the case Ra > 0. The individual terms are defined in the rate equations

(B1) - (B6) and described in Table 1. When Ra < 0, the generation term (GA) is eliminated.

Fig. 3. Dimensionless Ekman along-roll (V" = Us) (a) and cross-roll (U* = -V_) (b) wind

components when fl = 0" for Ekman depth D* = 1. The solid curves are obtained from (5.1),

(5.2) and (2.8), and the dashed curves from the Fourier representation (5.3).

Fig. 4 Curves of minimum critical forcing rates (Rac, Rec)min for the Ekman profile (5.1)

$

- (5.2) when D = 1. Values of the preferred aspect ratio ap, orientation angle tip (in degrees)

and frequency magnitude I w$1 (in parentheses) are labeled along each curve. In (a), the

results using the two-wavenumber (2-WN) (solid), three-wavenumber (3-WN) (dashed)

• and four-wavenumber (4-WN) (dotted) numerical stability analyses of section 4b are shown.

In (b), the two-wavenumber results obtained from the Hopf bifurcation equation of section

4a are shown, with the dashed curve representing the thermal-q instability mode and the

solid curve the inflection point instability mode. The arrows indicate two possible evolutions

of the atmospheric forcing rates Ka and Re from subcritical to supercritical values; solutions

at the points A and Bi are discussed in sections 5b and 6. The corresponding parameter

values at each point are given in Table 2.
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Fig. 5. Schematic depiction of a propagating roll stream function pattern in the presence of an

Ekman wind profile V for a small, positive orientation angle 3p. The axes (Xs,ys) represent

the standard east/north coordinate system, and the axes (x,y) represent the roll coordinate

system. The parameter z T specifies the domain height, the roll spacing is given by the

preferred wavelength Lp, and Vg is the westerly geostrophic wind vector. Propagation is

from right to left in the direction of the cross-roU flow.

Fig. 6. Patterns of dimensionless roll stream function _r for the points labeled A (a), B l (b),

B2 (c) and B._ (d) in Fig. 4b. Propagation is from right to left as denoted by the horizontal

arrow. Parameter values associated with each point are given in Table 2.

Fig. 7. Patterns of dimensionless roll perturbation temperature T_ for the points labeled

A (a), B1 (b), B2 (c) and Ba (d) in Fig. 4b. Propagation is from right to left as denoted by the

horizontal arrow. Parameter values associated with each point are given in Table 2.

Fig. 8. Dimensionless energy budget diagrams corresponding to the points labeled A (a),

B1 (b), B2 (c) and B3 (d) in Fig. 4b. Each term corresponds to a dimensionless energy rate

defined in (B1) - (B6) and described in Table 1. The dimensionless roll energy is quantified

by the value of E, and the boxes represent four separate pools of energy: roll kinetic (KER),

roll available potential (AER), background kinetic (KEB), and background available

potential (AEB). Parameter values associated with each point are given in Table 2.
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Fig. 9. Vertical profilesof eachof the dimensionless energy rates defined in (B1) - (B6) for

the points labeled A, B1 and B_ in Fig. 4b. Dashed curves correspond to the supercritical

point for the inflection point mode (point A), solid curves for the thermal mode (point B 1),

and dotted curves for the thermal mode (point B2). The boxes (KER), (AER.), (KEB) and

(AEB) represent the four pools of energy. Parameter values associated with each point are

given in Table 2.

Fig. 10. Vertical profiles of dimensional vertical (a) heat and (b) momentum fluxes for the

points labeled A, B1 and B2 in Fig. 4b. Line types are as in Fig. 9. Parameter values

associated with each point are given in Table 2.

Fig. 11. Vertical profiles of the perturbation temperature modification T b for the solutions at

the points labeled B1 (solid), B_ (dotted) and B3 (dashed) in Fig. 4b. Parameter values

associated with each point are given in Table 2.

Fig. 12. Vertical profiles of the initial cross-roll wind U (a), the wind modification u_ (b),

and the modified background cross-roll wind U + u_ (c), for the solutions at the points

labeled B 1 (solid), B2 (dotted) and Bs (dashed) in Fig. 4b. Parameter values associated with

each point are given in Table 2.

Fig. 13. Dimensional original and modified Ekman spirals and the geostrophic wind vector

Vg in roll coordinates. The solid curve is from the original wind components (5.1) - (5.2) and

the dotted curve from the modified winds shown in Fig. 12c corresponding to case B_.

Parameter values associated with this point are given in Table 2.
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Fig. 14 Curves of minimum critical forcing rates (Rat, Rec)_in obtained from the Hopf

bifurcation equation of section 4a for the modified cross-roU Ekman wind profile shown in

Fig. 12c corresponding to point B 3. The dashed curve represents the thermai-q instability

mode. Values of preferred aspect ratio ap, orientation angle _p (in degrees), and frequency

magnitude ]w_l (in parentheses) are labeled along the curve. Parameter values associated

with this point are given in Table 2.
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Table 1

Summary of energetics terms in (3.5) - (3.8).

DEFINITION

vertical heat flux or

AER/KER conversion

ORIGINATING TERIS

'_*/_* in (2.3) and

_*/_x* in (2.4)

SOURCE

KER

RS Reynolds stress or

mechanical generation

advection terms involving

$

U in (2.3)

KER

GA thermal generation

(Ra > 0); or zero (Ra < O)

with reformulated AER and

(Tlb - Tsa) term of Ra

in (2.4) ;

or none

AER

AEB rate equations

Kb-MOD initial basic state

wind profile modification

Ab-MOD initial basic state

temperature profile

modification

Jacobian term in (2.3)

Jacobian term in (2.4)

KEB

AEB

K-DIS

A-DIS

roll and background

viscous dissipations

roll and background

thermal dissipations

last term in (2.3)

last term in (2.4)

SINK

AER

KEB

AEB

KER

AER

KER

KEB

AER

AEB



Table 2

Parameter values associated with the path arrows shown in Fig. 4b. The

values for (Rac,Rec)min denote the minimum, critical forcing rates needed for

roll development, and the values for (Rac,Rec)sup denote the supercritical

forcing rates corresponding to each of the points A, BI, B2 and Bs on the

paths. Here Lp, ap, #p, _p, ]w_l and Tp are the preferred values of

horizontal wavelength, aspect ratio, orientation angle, propagation velocity,

dimensionless frequency magnitude and period. The quantity Lp/z T represents

the ratio of the horizontal to vertical roll scales, and U is the average

cross-roll wind velocity in the boundary layer. Other parameter values are:

7d-Te = 0.I 'C/600 m, v = r = 25 m2/s, P = I, zT = 600 m, D = I, q = I,

n = 2, Ax = -0.112, As = -0.094, Aa =-0.104, rl = 0.094, r2 = 0.259, and

ra = 0.242.

Point (_c,Rec)_i, (hc,Rec)sup (b)km (ap) #p Cplabel (m/s)

A (s,60) (i0,60) 1.s (0.65) 6" -0.3

B, (10,30) (15,30) 2.0 (O.S) S" -0.2

B_ (i0,30) (2S,30) 2.0 (O.S) S" -0.2
I

B3 (I0,30) (50,30) 2.0 (O.O) S" -0.2

(m/s)

(2.2) z.s 3.1 -o.6

(1.s) 2.'r 3.3-o.3

(1.6) 2.7 3.3-o.3

(1.6) 2._ 3.3-o.3



Table A1

Coefficient Definitions for the Spectral Model (ll) - (A14).

i ai bi Ci di

1

2

3

4

5

6

)[qL 2qn- a 2] (_)

(n+q) P
_a_+q2) [a2-2qn- q2] (a-Y-_-T)

1 _+n_ [nL2q n-a'] .....)

1 (n+q) [a2_2qn_n_] .....

½(n+q) .....

½(n- q) .....

P (a2+q 2)
(a-T_)[(a2+q_)A i + r,] a

P [(a2+n2)h_ + r2] (a2+n2)
(a-'n-_) a

P [(a2+n2)h3 + r3] (n-q)2
(a-r_) a

P r_] (_+q)_
(a-Y-+_'Y)[(a2+q2)h_ + a

PAl 4__
a

4n2
P A2 -_-

7 q ..... PA3

n

Table A2

Definitions of the Fourier Coefficients Ai and ri.

i Ai ri

2

3

2 _ U*
Io sin2 (qz*)dz*

2 f U*
1o sin(qz*)sin(nz*)dz*

2 _ U*
Jo sin2(nz*)dz*

2 _ _2U*

_o _ sin2(qz*)dz*

_ Jo_'Y2 _" 02U sin(qz*)sin(nz*)dz*

2 jf 02U*
o _ sin2(nz*)dz*



3. RADIATIVELY-DRIVEN INTERACTIONS BETWEEN

STRATOCUMULUS AND SYNOPTIC WAVES

In a paper accepted for publication in the _10vrnal of the

AtmosDheric Sciences (Clark, 1993), the effect of radiative

cooling perturbations above stratocumulus on the structure of

synoptic-scale waves is considered. The cloud position is linked

to the waves via the phase of the low-level streamfunction.

Coupling is strongest with cloud to the west of surface troughs.

The resulting stationary structures capture the summertime

pattern of stratocumulus off California and its linkage to the

mid-Pacific ridge. The implication is that cloud-induced radiative

cooling above cloudy regions plays an important role in

determining observed structures over marine areas.

A copy of this paper is attached.
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ABSTRACT

Quasi-geostrophic disturbances on a mid-latitude I_-plane channel

forced by radiative heating perturbations due to stratocumulus are

considered. Longitudinal phase of the cloud is fixed to that of the low-

level stream function. The background flow has a jet centered near the

tropopause. Cloudiness is wavelike with cooling above cloudy areas

that decreases exponentially with height. No perturbation cooling

occurs above cloud-free areas. Forced steady waves are found. Though

infinitesimal amplitude disturbances are considered, the problem is

nonlinear because of the coupling between cloud and winds. The

resulting structures are sensitive to the phase relationship between

cloud and stream function with strongest coupling for cloud to the

west of surface troughs. The waves have vertical scales roughly the

troposphere depth. The stationary structures capture the summertime

pattern of stratocumulus off California and its linkage to the mid-

Pacific ridge. Zonal mean cloud cooling forces an adjustment to the

mean westerlies that strengthens them in the northern half of the

channel near the lower boundary. When this correction is allowed for,

synoptic-scale amplitudes increase (decrease) just above the cloud in

the northern (southern) part of the channel. Mean cloud cooling also

renders the background potential vorticity gradient negative and thus

baroclinically unstable just above the cloud in the northern domain.
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1. Introduction

Interactions between clouds and winds have important, but poorly

understood, influences on atmospheric variability. Daily weather

changes, as well as secular variations on inter-annual and climatic

time scales, are modulated by such interactions. On the climatic scale,

a major uncertainty in assessing the susceptibility of the general

circulation to increasing CO 2 concentrations is the role of clouds.

Lindzen (1 990) doubts, because of the primitive state of our

understanding of cloud-mediated feedbacks, whether it can be stated

with certainty that global temperatures will increase in response to

increasing CO 2. Randall et al. (1984) show that cooling due to a 4%

increase in global coverage by low-level stratiform cloud could more

than offset the widely-predicted 2-4OK rise in global temperatures due

to a doubling of CO 2.

There has been a lack of studies whose aim is to understand the

interaction between motion systems and stratocumulus cloud. This is

unfortunate because of widespread coverage by this cloud. For instance,

according to Campana (1988), the largest contributor to total cloud

cover at mid- and high latitudes is low cloud followed by middle and

then high cloud. Also, Rossow and Schiffer (1991) show that in either

hemisphere from 20 o to 50 ° latitude most cloud tops occur at

pressures of 800 mb or greater.

Since the solar albedo of stratocumulus (typically 0.4) exceeds that

of the underlying surface (typically < 0.1 for water and 0.2 for land),

there is a deficit of absorbed solar radiation at the surface in cloudy

regions. Near the ground, stratiform clouds also warm by absorbing and

emitting infrared radiation. Ramanathan et al. (1989) show, however,
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that the net radiative effect within the cloud and below is cooling.

Thick decks of stratiform cloud also modify upwelling infrared

radiation above the cloud. They emit less radiation than the lower

boundary (especially over land areas) since their emission temperature

is less than that of the underlying surface. The only exception is at high

latitudes where cloud top temperatures can be higher than lower

boundary temperatures and stratiform clouds can warm the

atmospheric column above them. Randall et aL (1984) and Sohn and

Smith (1992) show up to a 10% or 40 W m -2 decrease in satellite-

measured upwelling infrared radiances due to marine stratocumulus off

the coast of California.

Donner and Kuo (1984) calculated infrared heating rates allowing for

low-level stratiform clouds and find, at mid-latitudes, a perturbation

due to clouds of about 2 K d -1 near cloud top. They also find stationary

quasi-geostrophic structures forced by topography, surface latent and

sensible heating, and radiative heating (as modified by' clouds).

Resulting wave structures closely agree with tropospheric

observations. Cloud induced asymmetries, they find, account for at

least 20% of the calculated wave amplitudes. Donner and Kuo neglected

meridional gradients of the mean zonal wind thus precluding wave

energy accumulation in certain latitudinal belts because of meridional

var(ations in refractive index (Karoly and Hoskins; 1982). This could

lead to a significant error in their estimate of synoptic-scale

sensitivity to cloud heating. There have been many other studies of the

response of large-scale waves to stationary patterns of heating

(Smagorinsky, 1953; Derome and Wiin Nielsen, 1971; Ashe, 1979;

Hoskins and Karoly, 1981; Lindzen and Jacqumin, 1982; Alpert et al.,

1983). In these studies, c{ouds, if accounted for, are geographicatly

fixed and not linked in any way to the disturbances they modify.
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This study focuses on the effects of perturbations to the field of

radiative heating due to stratiform clouds. The calculations are

dynamical in that the cloud location is tied to the synoptic-scale

disturbance it forces. Cooling rates due to stratocumulus will be very

modest (a few deg. K d"1). Calculated radiative cooling rates in very

thin layers near the top of widespread cloud decks are roughly an order

of magnitude larger (Nicholls, 1984). When this cooling spreads over a

horizontal layer whose thickness matches the vertical scale of typical

synoptic-scale disturbances, it is roughly of the magnitude used.
m

Certain stationary features of the large-scale cloud distribution

link to synoptic scale wind patterns. For instance, persistent decks of

marine stratocumulus occur in regions of subsidence to the east of

subtropical highs at mid-latitudes (Schubert, 1976; Schubert et aL,

1979; Warren et a1.,1988). In the northern hemisphere, this

stratocumulus is most extensive during the summer when subsidence

associated with the subtropical highs is strongest (Schubert et aL,

1979). In these regions, a strong temperature inversion with warm, dry

air aloft caps the stratocumulus. Turbulence generated by shear in the

cool moist air below the inversion and cloud top radiative cooling

combine to maintain a sharp elevated base to the inversion layer (Lilly,

1968; Schubert, 1976). Schubert et aL (1979) show that for a

horizontally homogeneous steady-state cloud deck, the strength of the

synoptic-scale divergence affects both cloud base and cloud top height:

the stronger the divergence, the lower the cloud base and top and the

thinner the cloud. Both sensible and latent heat flux divergences thus

will be modified by divergence and thus there could be important

feedbacks on the synoptic scale via this mechanism. Thus feedbacks of

stratocumulus on synoptic scale motions are complex and are not solely

due to low-level radiative cooling. This study concentrates on

radiatively-driven coupling.
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Other features of the stratiform cloud distribution closely couple to

traveling weather systems. For example, the movement of cold air

masses off the east coast of Asia and North America during winter

behind propagating cyclones often leads to widespread marine

stratocumulus. Also warm-frontal overrunning often creates broad

regions of cloud ahead of propagating cyclones.

It is thus reasonable to link the longitudinal phase of some features

of the observed stratocumulus distribution to the phase of synoptic-

scale wind and thermal patterns. The focus of this study is to examine

the structure of synoptic-scale features that result from this coupling

using linear quasi-geostrophic theory applied to a mid-latitude 13-plane.

These structures will be compared with observations over marine

regions where the effects of inhomogeneities in the underlying lower

boundary are minimal.

Assume the cloud distribution along a latitude circle is wavelike.

Since cooling normally occurs in and above cloudy regions, mean and

wavy components of cooling result, see Fig. 1. The mean cooling, if a

function of latitude, can change the zonally-averaged winds and

temperatures. They, in turn, can feed back on the synoptic-scale waves

that couple with low-level clouds. This study wilt separately consider

structures driven by mean and wavy components of the cloud cooling as

well as feedbacks on stationary waves triggered by mean cloud cooling.

Theory appears in Section 2 and results presented for an analytical

constant background wind model. Stationary wave structures with a

realistic background atmosphere are presented in Section 3. Forcing is

by a combination of fixed lower boundary heating (to simulate

geographically fixed patterns due to land-sea contrast) and cloud.
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2. Theory

The linearized quasi-geostrophic potential vorticity equation is

aq._'+ _' + aQ a_v' = _fo ____(poh'/ . (2.1)
at ax ay oqX Po aZ _ N 2 ) dq',

where _' is the stream function. The vertical coordinate is log

pressure, z=HIn(Po/p): H is scale height, Po = 1000 mb. The geostrophic

winds Ug and Vg are, respectively, -a_'/ay and a_'/oqx. On a 13-plane, the

Coriolis parameter f=fo+13y. The background density (Po) is a function

of z only. Linear dissipation in (2.1) arises from Newtonian cooling and

Rayleigh friction. For convenience, the time scale of each is T d = d "1.

The perturbation potential vorticity, q', relates to _' by

Po az IN2 aZ
(2.2)

Define the heating rate, h' (dimension m s'3), from the thermodynamic

equation:

, ,ab' a:B N2w ' h'
ab'+L_x + a_' + = -db',at ay ax

(2.3)
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where b' and B are, respectively, perturbation and background

buoyancies. The buoyancy frequency squared is N2 = dB/dz. The

hydrostatic and thermal wind equations are, respectively,

b' ;gV' (2.4)= fo_w

;)z

and

oqU =_ j_. o__B_B (2.5)
_z fo _Y "

The background potential vorticity gradient is

o__ I_ _ _)2U fo2 ;) (po _)U/
o_.y_-_ o_Y2 + p--_._- [_-_. _--_-). (2.6)

For steady heating at a single wavenumber k in the x direction, (2.1)

and (2.2) combine to yield a diagnostic equation for _':

_)2_ + f2° oq Po , (2.7)

where _' and h' are, respectively, _'(y,z)exp(ikx) and _(y,z)exp(ikx).

Dissipation is accounted for by letting

U* = U(y,z) -i/(kTd). (2.8)

Equation (2.7) is of the Helmholtz type and can usually be solved by

successive over-relaxation. The local nature of its solution, neglecting

dissipation for the moment, depends on the factor
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R ---L_--_- - k2 . (2.9)
U ay

In regions of the y-z plane where R is positive, a stationary solution is

wavelike. This implies wave energy propagation. Where R is negative,

energy propagation is not possible.

a. Constant background wind

Consider the response to heating where the wave and associated

cloud have an arbitrary zonal phase speed c. Waves that neither grow

nor decay with time, in spite of the radiative forcing, are considered.

The wavy component of cloud heating is

h'-t-[exp[ik(x-ct) + ity--_].

The amplitude _ is complex with modulus 2 K d "1 times g/e o (g is

gravity and e o = 273K). Heating decays exponentially with height with

e-folding depth D--10 km but without any phase change in keeping with

the model in Fig. 1. In this section and those to follow, only the region

above cloud top, located at z=0, is resolved. The lower boundary

condition of zero synoptic-scale vertical velocity is also applied at

z-0.

If the background wind is constant,

becomes

19Qlay = 13 in (2.6); (2.1)
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c3___x'B_F ' = fo _)h'
(U-c) + roqx + dq' N2 _)---_-

(2.10)

where N 2 is assumed constant. If the perturbation stream function, _',

varies with height as exp(imz), the perturbation potential vorticity

becomes q' -- -(k2+C2)_ ' - fo2(m2+im/H)_/'/N 2.

In (2.10), _' is the sum of a particular solution to the full equation

(with heating) and a general solution without heating. If _F' has the

horizontal structure exp(ikx+ity), the homogeneous solution is B

exp[i(kx+ty+mz)] provided

i3 k 2 _ 22).m2+im=N2 U -H f2 * c
(2.11)

The constant B is not yet known.

The particular solution is A exp[ik(x-ct)+ity-z/D] provided, using

(2.11),

A = - I-[ (2.12)

H D2

The solution to (2.10) is now

_'= exp[ik(x-ct)+i,y]{Aexp(-D)+ Bexp(imz)}. (2.13)

The constant B follows from the thermodynamic equation applied at

the lower boundary. Because of the log pressure vertical coordinate, the
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boundary condition of zero material vertical velocity must be applied

with caution. The Appendix shows that a new non-Doppler term appears

in the thermodynamic equation at z=0 for transient waves. It differs

from the non-Doppler term discussed in Lindzen (1968) and Geisler and

Dickinson (1975). They keep two terms arising from the expansion of

material vertical velocity that cancel and thus obtain a different, but

equivalent, formulation. The boundary condition at z=0 for a constant

mean wind is

,z 0 ,t__ + fo d oq__.._'= h, (2.14)
oqz

The non-Doppler term is the second on the left side.

The constant B follows upon substituting (2.12) and (2.13) into

(2.14):

in!m2+ im N2c/
B=- _ H CH gDU* / (2.15)

The stream function amplitude at the lower boundary is, using (2.12)

and (2.15),

i_m 2+irn_im+ 1_.)
A + B = - H D = ]-IG. (2.1 6)

The last equality defines G. Equation (2.16) enables the phase of the

cloud field at z=0 relative to that of the stream function to be found as

a function of U, k, d (or Td), c, H, and D. Since the cloud is 180 o out of

phase with the heating (see Fig. 1), (2.16) states that phase{stream
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function} phase{cloud} = arg{-G}. Suppose, for instance, arg{-G} = -

90 °. Cloud would be concentrated east of troughs and, if they tilt

westward with height, on their warm side. Arg{-G} = +900 implies

cloud to the west of surface troughs. Fig. 2a shows the sensitivity of

arg{-G} to zonal wavenumber and background wind for stationary waves

(c=0) with Td = 10 d, D=H=10 km and N=0.01 s"1. This value of Td is in

accord with the detailed calculations of Prinn (1977) for the radiative

time scale of disturbances above an insulated lower boundary with a

vertical wavelength about twice the troposphere depth. With westerly

background flow, there is a broad region, especially for large

wavenumbers, where the cloud mainly occurs to the east of the surface

trough. Background easterlies or weak westerlies (especially for large

east-west wavelengths or small zonal wavenumbers) favor cloud

organized to the west of surface troughs.

Wave stationarity has eliminated the non-Doppler term in (2.14).

However, calculations show that even with traveling waves, this term

is very small. Thus all solutions are mainly dependent on the Doppler-

shifted background wind, U-c, and not independently on U and c.

Therefore the ordinates in Figs. 2a and 2b could, without significant

loss in accuracy, be U-c.

The dimensionless surface stream function amplitude in Fig. 2b

follows from (2.16) after dividing by g2/(foN2 ). Background Doppler-

shifted westerlies and small zonal wavenumbers favor the largest

response to stratocumulus cooling. One locus of maximum amplitude,

labeled critical, occurs for U-c = 0.

A second sloping locus of maximum response, labeled external

Rossby, occurs in the region of westerly Doppler-shifted background

winds. For zonal wavenumber five, according to Fig. 3, the vertical
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wavelength, 2=/Re(m), near this locus is over 100 km. The imaginary

part of m, from Fig. 3, gives a 28 km e-folding depth for amplitude

decay. Thus the mode is almost barotropic. If it was not for dissipation,

the mean flow of about 8 m s"1 corresponding to this mode would

render it as trapped or evanescent. Weak dissipation forces the wave to

exhibit a slight westward tilt with height at all wavelengths and

background winds. Stratocumulus primarily lies to the east of surface

troughs for the external Rossby mode. Phase of the cloud field relative

to that of the surface stream function is very sensitive to the Doppler-

shifted background wind as witnessed by the concentration of constant

phase lines near this locus in Fig. 4a.

Marine stratocumulus off California lies to the east of the

subtropical Pacific high in a region of weak westerlies. The pattern

roughly corresponds to zonal wavenumber three to five and roughly

conforms to the stationary critical mode structure found above.

According to the theory, traveling stratocumulus patterns that

radiatively couple to synoptic waves would take on the external Rossby

mode structure with cloud concentrated to the east of surface troughs.

Unfortunately there have not been enough observational studies of

cyclonic systems to confirm or deny this linkage.

b. Synoptic-scale vertical motion

Summertime marine stratocumulus off the west coast of North

America occurs in a region of synoptic-scale subsidence. The

relationship between cloud location (as determined by the pattern of

radiative cooling) and lower troposphere synoptic-scale vertical

motion is implicit with the present analytical model. If the cloud

coincides with descent, then just above the cloud radiational cooling is

offset somewhat by compressional heating. Also, the capping inversion
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should be stronger in regions of synoptic-scale subsidence.

Alternatively, if rising motion occurs in the region of low-level

cloudiness, adiabatic cooling supplements cloud cooling.

Substitute (2.14) into (2.3). The result is

N2w'=[_e -z/D -ikfoU*(-A--e-z/D + imBeimZ}]eik(x-ct)+itY.D
(2.17)

After (2.12) and (2.15) are used for A and B, respectively, and (2.11)

solved for m, w' can be found for a given heating rate amplitude ]].

Write the result of these substitutions into (2.17) as N2w'=Rh ', where

R is complex and h'=_exp[ik(x-ct)+ity]. The sum of cloud radiative and

compressional heating is thus h'-N2w' = (1-R)h'. Thus 1-R is the ratio

of total heating to cloud radiative heating.

The phase of 1-R at 1 km for stationary waves appears in Fig. 4 as a

function of background wind and zonal wavenumber. For the reasons

stated above, the background flow can, with little loss in accuracy, be

considered the Doppler-shifted flow (U-c). In the shaded region, rising

motion mainly occurs above cloudy regions that cool radiatively.

Wavenumbers less than about six exhibit this anomalous behavior

provided U-c < -5 m s "1 For U-c greater than about -5 m s"1 and/or

wavenumbers greater than about seven, low-level subsidence occurs

predominantly in cloudy regions that cool radiatively.

The latter pattern is most commonly observed in regions of

persistent stratocumulus such as off the west coast of North America.

Subsidence reinforces the capping inversion in these regions leading to

a more permanent cloud deck. Again this simple theory agrees fairly

well with observations of marine stratocumulus.
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3. Influence of Background Wind Shear

a. Response to wavy heating

Consider steady waves forced by wavy heating on a mid-latitude 13-

plane channel with a realistic background flow:

U(y,z) = Uo + Uscos(ey)exp[-(Z-Zo)2/D2] , (3.1)

with U o =5ms -1, U s = 15ms -1,z o = 10 km, D U = 10 kmforz< zo and

D U =20kmforz>z o,t=rd3500 km -1 A20 ms "1 jet, Fig. 5a, centered

at the tropopause and mid-channel, y=0, is described. The associated

potential vorticity gradient, _)Q/_)y, in Fig. 5b is positive everywhere

with a maximum 2 km below the jet core. A stability jump occurs at

the tropopause such that N=10 -2 s-1 (2.5x10 -2 s "1) for z < z o (z > Zo).

The wavy heating has two components.

• Fixed Pattern due to Land-Sea Temperature Contrast

It is proportional to cos(kx)cos(ty) with amplitude 1 2 K d -1 times

g/e o and occurs at the lower boundary. This heating is introduced by

the thermodynamics Eq. (2.3) applied at z=0. Discretized Eq. (2.7) is

solved in the interior on a 0.5 x 175 km height-latitude. The fixed

heating does not contribute to the forcing term in (2.7) at any

interior location. Thus this heating has a Dirac delta function

1 An amplitude of 2 K d-1 for the wavy component is equivalent to a cooling rate of rd2

times 2 K d-1 or 3.14 K d-1 in the cloud/ areas and zero cooling in cloud free areas

according to Fourier's theorem.
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distribution, 5(z), in the vertical.

• Variable Phase Component due to Stratocumulus

It links to the stream function at the lower boundary by an arbitrary

phase _c; if the stream function varies as cos(kx), the cloud cover

varies as cos(kx-_c). Negative cloud, of course, does not exist. Since

cloud is 1800 out of phase with radiative heating, see Fig. 1, _c =

90 o (-90 ° ) signifies that stratocumulus coincides with low-level

cold (warm) air advection to the west (east) of surface troughs

assuming they tilt westward with increasing height. Thus _c equals

arg{-G} discussed in Section 2a. Heating decays as exp(-z/D) where

D = 10 km. Its formal representation is h'=]-Iexp(ikx) where

,lz=o 
l-[ = rio t_,(z=O) I ex -i_c - z cos(ly).

(3.2)

At mid-channel y = 0. Also 1-[o = 2 K d "1 times g/e o .

Substitute (3.2) into (2.7); the steady response to steady wavy

heating follows. Impose a radiation condition at the domain top (20

km) and set the stream function equal to zero at the northern and

southern walls, which are W=3500 km apart.

There are some important points to note.

The fixed component of wavy heating is indispensable since it

creates the disturbance to which the cloud and its cooling pattern is

attached. That disturbance, in turn, is modulated in amplitude and

phase by the cloud.
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Although (2.7) is linear, condition (3.2) linking the cloud cooling and

stream function renders the problem nonlinear. Sequential

relaxation, nevertheless, was used to solve (2.7). Convergence, when

achieved, was slow because cloud cooling was repeatedly adjusted

according to (3.2) at each latitude. The algorithm succeeded for

zonal wavenumbers greater than three. Planetary-scale solutions

(wavenumbers one, two and three) were not found since these

wavelengths are propagating (as will be shown later) at almost all

channel locations.

° In contrast to the constant background wind model, only the forced

response to heating was found. It was not supplemented by a

solution of the homogeneous problem.

Wavy heating could trigger instabilities of the background state.

Since, the potential vorticity gradient, ;)Q/_)y, is positive everywhere,

internal baroclinic instability (Charney and Stern, 1962) is precluded.

Vertical shear near z = 0 is equivalent to a sheet close to the boundary

where the potential vorticity increases to the south, Bretherton (1966).

External baroclinic instabilities (James and Hoskins, 1985) are thus

possible. They would have largest amplitude near the lower boundary

and thus could have important implications on cloud-induced feedbacks.

This study focuses on the steady response to heating and ignores

spontaneous background instabilities.

WKB theory is helpful in understanding solutions of (2.7). Karoly and

Hoskins (1982) apply ray theory to interpret planetary wave

propagation in regions of slowly (for WKB theory to be valid) varying R,

defined in (2.9). Assume R is positive. Wave energy propagates along a

ray or characteristic with a speed equal to the local group velocity.

Rays tend to be parallel to the vector gradient of R. Wave energy thus
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focuses toward regions of maximum R. Zero wind lines where U = 0 and

thus R is infinite will be locations of energy accumulation by

stationary waves. As energy approaches the zero wind line, the group

velocity approaches zero and the energy takes an infinite time to get

there (at least according to linear, inviscid theory).

Note, first, that locally unforced (£I=0) solutions to (2.7) exist. In

the inviscid WKB limit, the condition

_ + ]__L_ (3.3)
U c3y N2 1_2 4H 2

must be satisfied, where _¢is the horizontal wavenumber, _:2--k2+/2, and

i_=m+ i-J- . (3.4)
2H

The stream function amplitude is wavelike in y and z: • = exp(i/y+imz).

The vertical wavenumber m can be complex, but i_2 is real. For #2>0, _-'

amplifies with height as exp(z/2H). An unforced solution is locally

propagating (evanescent) if 1_2>0 (_2<0).

Equation (3.3) relates the horizontal and vertical wavenumbers of a

stationary free wave. Let kcr be the zonal wavenumber at mid-channel

(latitude 45°N) where the transition between evanescent (k<kcr) and

vertically propagating (k>kcr) behavior occurs. Set !_ equal to zero in

(3.3); then

k2r = 1_ f2 t 2. (3.5)

U 8y 4N2H 2
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Fig. 6 shows the integral zonal wavenumber ncr = rkcrcOS(45° ) for

north-south wavelengths: Xy = W and 2W (;Ly=2=/t). The earth's radius is

r. Mid-channel values of U and oqQ/oqyare used. The jump in ncr across

the tropopause reflects the sudden change in N. Ultra-long waves with

wavenumbers one through four are propagating in most of the

troposphere. The exception is very close to the ground where long-wave

trapping occurs for _.y = W due to a maximum in curvature of U with

respect to z. Short wave trapping for wavenumbers greater than six

occurs for all z. All wavenumbers (except one) become or are trapped in

the stratosphere. Turning points for longer wavelengths develop at

larger altitudes than for shorter wavelengths.

Consider a wave forced by stationary wavy heating, Rexp(ikx), at

z=0. Neglect dissipation. Use (2.5) for _qB/_)yand apply (2.3) at z=0

where w=0:

ikfo imU - • = R. (3.6)

Since the wave is stationary, w=0 is equivalent to setting the material

vertical velocity equal to zero at the lower boundary. A resonant

response to heating occurs if the bracketed term on the left side of

(3.6) is zero.

The mid-channel amplitude and phase of 1/(imU - oqU/_)z)appear in

Fig. 7 for ;Ly = 2W = 7000 km. The vertical wavenumber, m, follows

from (2.11); acceptable roots have Im(l_)>0 thus preventing growth

with z faster than exp(z/2H). The amplitude in Fig. 7 exhibits a broad

peak near wavenumber five. In the absence of dissipation, the zonal

wavenumber for a resonant response to the wavy heating is 5.35. The

phase in Fig. 7 undergoes a shift of 100 to 110o near the peak response.

Held (1983) shows that the resonant response is an external Rossby
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wave. With no dissipation, the resonant wave grows with z as exp(zU"

l_U/_z) near the lower boundary. In the mid- and upper troposphere,

according to Fig. 6, the quasi-resonant response (wavenumber five) is

propagating. A turning point occurs at the tropopause and the response

is trapped in the stratosphere. These findings are consistent with

those of Held (1983).

Fig. 8 compares normalized amplitudes zonal wavenumber five for

_c--" "90o and +90 °. Wave structures are in accord with deductions

concerning locally evanescent and propagating behavior that follow

from Fig. 6. Both structures grow in amplitude from z=0 to a maximum

near the westerly jet core (mainly due to the decrease of background

density). Wave evanescence forces decay in the stratospheric

westerlies. The only significant difference between Fig. 8a and 8b

occurs near domain base at mid-channel. With cloud to the west of

surface troughs (_c = 90o) ' wavenumber five here is almost equal in

amplitude to the jet core maximum. The _c = -90o structure is much

more sharply peaked near the jet maximum; amplitudes near domain

base at mid-channel are smaller than for _c = 90o" The _c = 90o lower

troposphere structure is amplified by cloud radiative cooling since cold

air lying to the west of surface troughs (the waves tilt westward with

increasing height) is cooled radiatively. The _c = "90o structure is

weakened by radiative cooling since warm air located immediately

above cloudy areas east of surface troughs is cooled.

The Eliassen-Palm (EP) flux, shown in Fig. 9 for _c =-90o, is a

useful diagnostic of quasi-geostrophic disturbances (Edmon et aL

,1980). Not only does the EP flux permit an evaluation of wave-mean

flow interactions, it serves as a measure of wave propagation since it

is parallel to the local group velocity vector. Provided WKB theory
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holds, the group velocity is parallel to local wave energy flux vector.

The EP flux is

-" f_ovgb k,
F = -ugvg j+ N2

(3.7)

where j and'k are, respectively, unit vectors in the y and z directions.

The overbar is a x-average over a wavelength.

Streamline spacing in Fig. 9 is unrelated to flux magnitude; the

arrows show flux direction and magnitude. Although the streamlines

intersect the vertical walls 3500 km apart, there is no energy flux

across them. Upward energy fluxes occur throughout the troposphere.

Near mid-channel above 3 km, the flux vector is just about vertical.

This implies, from (3.7), the dominance of the heat transport over the

momentum transport contribution. The stationary wave must tilt

westward with height. Because the regions of warm air advection

ahead of surface troughs are cloudy, radiative cooling will decrease

northward wave heat transport thereby making the EP vectors slightly

less vertical than without cloud especially in the lower troposphere.

Stratospheric EP fluxes are very small in Fig. 9 and mainly horizontal

thus indicating wave evanescence.

Sensitivity of stationary zonal wavenumber five to _c is examined

in Fig. 10. Without cloud, forcing is due to land-sea contrast; the

resulting mid-channel amplitude of Vg at the lower boundary is, as

shown, 14.7 m s -1 The phase without cloud follows from (2.3).

Provided dissipation is small and wavenumber five is evanescent near

z=0, stream function phase relative to that of the heating is, as

displayed, -900 . Thus cooling (warming) due to land-sea temperature

contrast lies to the west (east) of surface troughs. A balance is struck
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between this heating pattern and advection by perturbation and

background wind as follows:

• Meridional advection of the background thermal field (background

shear is westerly) gives further cooling (warming) to the west

(east) of troughs.

• Advection by the background westerlies gives warming (cooling) to

the west (east) of troughs since troughs (ridges) are cold (warm).

The surface wind with cloud, according to Fig. 10, varies by as much

as 3 m s-1 or 20% and surface trough or ridge locations by as much as

14 o longitude. The surface wave amplitude is larger with cloud to the

west of surface troughs since cooling amplifies the perturbation

thermal and geostrophic wind patterns.

b. Response to mean cloud cooling

There is a non-zero mean over a wavelength, l-l(y,z), of the rectified

cloud cooling pattern in Fig. 1. Heating due to land-sea contrast,

however, averages to zero. The response to mean cloud cooling follows

from the zonally-averaged potential vorticity equation:

ifo o_ (P°_ / . (3.8)
t

kU Po o_z _ N2 J

The stream function, '{', gives the mean zonal wind and buoyancy

according to _--/o_y and fo_i_/_)z respectively. Dissipation of potential

vorticity in (3.8) balances cloud radiative generation.

The boundary condition at z=0 follows from the zonally-averaged
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m

thermodynamic equation" -dfooq_/_z + ]-] = 0. Mean cloud cooling is small

enough at the upper boundary that the zonal mean buoyancy perturbation

or oq_-'/oqz is zero. At lateral domain boundaries, the zonally-averaged

ageostrophic meridional flow must be zero. Thus the only effect left in

the zonally-averaged steady u momentum equation is Rayleigh friction.

The lateral boundary condition is thus _q_/_)y = 0.

Sequential relaxation solves (3.8). Resulting tropospheric zonal

wind, buoyancy, and vertical velocity fields appear in Fig. 11; the latter

follows from the zonally-averaged thermodynamic equation. Mean cloud

cooling creates a negative buoyancy perturbation, Fig. 11b, that is in

thermal wind balance with a zonal wind whose maximum speed is 2.7

m s -1 at the lower boundary, Fig. 11a. The wind is westerly in the

northern part of the domain and easterly to the south. In most of the

channel, compressional heating in weak subsidence of up to 0.06 cm s"

1, Fig. 11c, offsets cloud cooling. Rising motion of up to 0.09 cm s -1

occurs near the northern and southern boundaries. Since there is no

cloud cooling at these boundaries, adiabatic cooling is balanced by

Newtonian warming.

c. Feedbacks of mean cloud cooling

Linearization decouples the responses to wavy and mean cloud

cooling since they are assumed to be of the same order of a

dimensionless amplitude. Thus the stationary wave forced by wavy

cloud cooling does not sense the mean flow, and accompanying thermal

field, set up mean cloud cooling. Useful insights are gained by departing

from strict linearity to find the stationary wave response to

background flow alterations by mean cloud cooling.

Add the zonal flow forced by mean cooling, Fig. 11a, to the
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background flow of Fig. 5. The jet core, Fig. 12a, shifts southward and

westerly vertical shear just above cloud decreases (increases) in the

northern (southern) half of the channel. The result, near the northern

boundary, is little vertical shear for all z. Substantial changes in

potential vorticity gradient, oqQ/_)y, occur near z=0 (see Fig. 12b). A

region of negative gradient materializes in the northern half of the

domain. Thus mean cloud cooling has rendered the background flow

baroclinically unstable (Charney and Stern, 1962). At the same time,

oqQ/o_ydoubles immediately above the cloud to the south.

The difference between stationary wavenumber five amplitude

obtained with modified and unmodified mean flow appears in Fig. 13.

Mean cloud cooling affects the structure below 5 km. Wave

amplification (decay) occurs in the northern (southern) half of the

channel. The region negative _Q/c3y to the north strongly influences the

local wave amplitude. According to (3.5), all wavenumbers are trapped

when _)Q/_)y<0 provided U>0. Thus wave amplification occurs above

cloud top as the wave cannot propagate energy laterally or vertically

away from the energy source as efficiently as with the unmodified

flow. To the south, according to (3.5), the critical wavenumber, kcr, for

the transition from wave propagation to evanescence increases in

response to doubling oqQ/_)y.Propagation of energy away from the energy

source due to wavy cloud cooling is facilitated. The local wave

amplitude thus decreases.
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4. Discussion

Significant progress has occurred recently in understanding the

mid-latitude planetary boundary layer (PBL) when cloud is present.

Most studies of the cloud-topped PBL treat synoptic scale wind,

divergence, and advection as given; they focus on the ensuing PBL

thermodynamics of vertical mixing under horizontally homogeneous

conditions (Lilly, 1968; Schubert, 1976 and 1979; Nicholls, 1984).

Because of PBL vertical mixing (of heat, momentum and water

substance), mass entrainment across the capping inversion, and latent

heating through drizzle formation, the PBL can in turn influence the

synoptic mass, pressure and wind fields. The present model crudely

attempts to close this feedback loop. Without explicit moisture and a

PBL, this study focuses on the feedbacks to the synoptic scale of a

prescribed pattern of low-level stratiform cloud that is linked by

longitudinal phase with the in situ synoptic wind field. The

hypothesized process responsible for this linkage is cloud-induced

perturbations to the field of radiative heating.

It is reasonable to not account for the PBL structure if the vertical

scale of the disturbances excited by cloud cooling is much larger than

the boundary layer thickness. For the linear structures forced by wavy

cloud cooling whose vertical scales are on the order of the troposphere

depth, this is a posteriori a reasonable assumption. Infrared cooling

due to stratocumulus, however, is sharply peaked near cloud top. A

caveat that can be attached to the present study is that a considerably

smaller e-folding depth for the decay of cloud cooling than 10 km

should have been used. Wavy cloud cooling with a 2 km e-folding depth

forces stationary synoptic waves whose vertical and meridional

structures are almost identical with those in Fig. 8. The conclusion is

that the background zonal wind field plays a dominant role in fixing
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linear wave structures. The response to mean cloud cooling with a 2

km e-folding depth, however, is considerably shallower and it is hard

to justify ignoring the PBL structure. It is not within the scope of this

study to pursue this matter any further. Suffice it to say that the

rectified nature of cloud cooling associated with wavy stratocumulus

patterns could have implications that go far beyond those pointed out in

this study.

A second caveat is that the cloud top radiative cooling perturbation

used in the present calculations was very modest (a few deg. K d "1). As

pointed out in the introduction, cooling near cloud top can be an order

of magnitude or more larger (Nicholls, 1984). It is thus possible that

the response to cloud cooling is highly nonlinear near these

concentrated layers of cooling. The resulting synoptic waves would be

strongly coupled to the PBL and explicit representation of the PBL

should be necessary to fully account for their structure.

The main finding of this study is that the observed coupling between

summertime stratocumulus and northern Pacific surface winds and

pressures is plausibly driven by cloud radiative cooling perturbations.

The model produces stationary structures that resemble observed

patterns not only in the phase between cloud and low-level horizontal

winds but in the relationship between low-level subsidence and cloud.

There are other mechanisms besides radiative cooling that

influence the linkage of the cloud-topped marine PBL with synoptic

disturbances. For instance, Schubert (1976) showed that synoptic

divergence influences PBL depth in a steady mixed layer PBL model.

Horizontal divergence, presumably, would increase turbulent sensible

and latent heat flux divergences by lowering the PBL top. A feedback on

the synoptic scale motion could ensue. Another mechanism could be

drizzle formation. Under conditions of strong cold air advection, drizzle
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often forms in stratocumulus (Nicholls, 1987). A net latent heating of

the PBL follows while, at the same time, the PBL is stabilized through

heating in the cloud layer and evaporative cooling below. Sea surface

temperatures also undoubtedly influence observed stratocumulus

patterns.

It is unlikely, however, that these factors, collectively or

individually, can account for the observed coupling over the

summertime northern Pacific. Cloud radiative cooling must be

accounted for in any comprehensive theory that explains the observed

linkages.
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APPENDIX

The material vertical velocity (w*) must be zero on a horizontal

solid boundary. The vertical velocity (w) in the log pressure coordinate
system is

W = oH o.) ,p (A1)

where co = dp/dt. If geometric height, z*, is the vertical coordinate, co
can be expanded as

ap --, ---
=--+ vg._p + w, _.__p (A2)

at az • '

where, since the horizontal wind is geostrophic, the middle term on the

right side drops out. At the lower boundary w* is zero. Thus, from (A1)
and ('A2),

w = _H_ap
P at (A3)

In linear theory (A3) applies at z=0 as well as at z*=0. The quasi-

geostrophic stream function _v relates to pressure by _=P/(foPo)" thus
(A3) becomes

w = -H-a__= .__Ha__
at _/o at (A4)

29



The last equality follows after linearization and defining _Fo as a

background streamfunction (=po/Pofo). After the scale height (H) is

introduced, then at the lower boundary, where w* is zero,

w = - fo a.___._ (A5)
g at

Thus, for example, the zonally-averaged thermodynamic equation at the

lower boundary is

aB foN 2 ;_=_.
at g at

(A6)
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FIGURE CAPTIONS

Fig. 1 Schematic of wave structure showing location of cloud

cooling.

Fig. 2 Phase (degrees), (a), and amplitude (dimensionless)in units of

10 6, (b), as functions of background wind (U) and zonal

wavenumber of stream function at z=0 in analytical model.

Dissipation time is 10 days; phase speed is zero. N=0.01 s-1

Shaded region in (b) is where amplitude is less than 16.

Fig. 3 Real and imaginary parts of vertical wavenumber in units of

10 -6 m "1 for stationary waves of zonal wavenumber five in

analytical model. N=0.01 s-1

Fig. 4 Phase of factor 1-R (defined in text) at z=l km

for zonal wavenumber five, T d = 10 d and U--10 m s-1.

Meridional wavelength is 7000 km or 2W, where W is channel

width. Phase is labelled in degrees. Shaded region is where

phase is less than -90 °.

Fig. 5 (a) Background wind, U(y,z); interval 2.5 m s"1. (b)

vorticity gradient, o_Q/o_y; interval 10 "11 m'ls -1.

Potential

Fig. 6 Critical zonal wavenumber separating vertically propagating

from evanescent solutions at mid-channel. Labels Xy=W(2W)

refer to wavelength in y direction where W is channel width.

Fig. 7 Amplitude (s'l), and phase, of 1/(imU-qoU/qoz) at lower



boundary in mid-channel versus wavenumber.

Fig. 8

Fig. 9

Amplitude of perturbation stream function (normalized as

maximum value is unity) for zonal wavenumber is five.

(a) ¢c = -900; (b) _c = 900.

I

Eliassen-Palm flux for wavenumber five and ¢'c = -900.

Fig. 10 Perturbation geostrophic wind at lower boundary at mid-

channel, Vg, and phase of stream function, ;L, at lower

boundary as functions of the phase of stratocumulus-induced

heating field. If heating due to land-sea contrast goes as

cos(kx), stream function is cos(kx+X). Also shown are Vg and X

if clouds do not occur and the wave is driven by fixed surface

heating only.

Fig. 11 Tropospheric response to mean cloud cooling (a) Zonal flow

forced by mean stratocumulus cooling. Contour interval is 0.6

m s -1. (b) Buoyancy perturbation; interval 0.03 m s -2. (c)

Vertical velocity; interval 0.03 cm s -1. Dashed (solid)

contours indicate negative (positive) values. Zero contours are

labeled.

Fig. 12 (a) Background wind supplemented by contribution due to mean

cloud cooling; interval 2.5 m s "1 (b) Potential vorticity

gradient (negative region shaded) corresponding to flow in (a);

interval 10 "11 m-ls-1

Fig. 13 Change in stream function amplitude when mean flow forced by

cloud cooling is added to background flow; wavenumber five.

¢c = 90o. Values are normalized to unity.
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